Skip to main content
  • 2524 Accesses

Abstract

Confocal laser scanning microscopy (CLSM) is a type of high-resolution and comparatively non-destructive fluorescence imaging technique that overcomes the limitations of conventional wide-field microscopy and facilitates the generation of high-resolution 3D images from relatively thick sections of tissue. In addition, CLSM enables the in situ characterization of tissue microstructure. Images generated by CLSM have been utilized for the study of articular cartilage, bone, muscle, tendon and ligament, and in the field of orthopaedics. More importantly, recent evolution in techniques and technologies have facilitated a relatively widespread adoption of this imaging modality, with increased “user friendliness” and flexibility; therefore, applications of CLSM exist in the rapidly advancing field of orthopaedic implants and the investigation of joint lubrication. Accordingly, this chapter focuses on the specific applications, as well as the recent and future direction of developments of CLSM in orthopaedic research in tissues of orthopaedic interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arnoczky SP, Lavagnino M, Whallon JH, Hoonjan A (2002) In situ cell nucleus deformation in tendons under tensile load; a morphological analysis using confocal microscopy. J Orthop Res 20:29–35

    Article  PubMed  Google Scholar 

  • Arnoczky SP, Tian T, Lavagnino M, Gardner K (2004) Ex vivo static tensile loading inhibits MMP-1 expression in rat tail tendon cells through a cytoskeletally based mechanotransduction mechanism. J Orthop Res 22:328–333

    Article  PubMed  CAS  Google Scholar 

  • Blumer R, Konakci KZ, Brugger PC, Jose M, Blumer F, Moser D, Schoefer C, Lukas JR, Streicher J (2003) Muscle spindles and Golgi tendon organs in bovine calf extraocular muscle studied by means of double-fluorescent labeling, electron microscopy, and three-dimensional reconstruction. Experimental Eye Res 77:447–462

    Article  CAS  Google Scholar 

  • Boyce TM, Fyhrie DP, Glotkowski MC, Radin EL, Schaffler MB (1998) Damage type and strain mode associations in human compact bone bending fatigue. J Orthop Res 16:322–329

    Article  PubMed  CAS  Google Scholar 

  • Brakenhoff GJ, Blom P, Barends PJ (1997) Confocal scanning light microscopy with high aperture immersion lenses. J Microsc 117:219–232

    Google Scholar 

  • Buckwalter JA (2002) Articular cartilage injuries. Clin Orthop Relat Res 402:21–37

    Article  PubMed  Google Scholar 

  • Burr DB, Forwood MR, Fyhrie DP, Martin B, Schaffler MB, Turner CH (1997) Bone micro-damage and skeletal fragility in osteoporotic and stress fractures. J Bone Miner Res 12:6–15

    Article  PubMed  CAS  Google Scholar 

  • Bush PG, Hall AC (2003) The volume and morphology of chondrocytes within non-degenerate and degenerate human articular cartilage. Osteoarthritis Cartilage 11:242–251

    Article  PubMed  CAS  Google Scholar 

  • Carvalho HF de, Taboga SR (1996) The applicability of hematoxylin-eosin staining plus fluorescence or confocal laser scanning microscopy to the study of elastic fibers in cartilages. Life Sci Cell Biol 319:991–996

    Google Scholar 

  • Chang J, Nakajima H, Poole CA (1997) Structural colocalisation of type VI collagen and fibronectin in agarose cultured chondrocytes and chondrons extracted from adult canine tibial cartilage. J Anat 190:523–532

    Article  PubMed  CAS  Google Scholar 

  • Chantawiboonchai P, Warita H, Ohya K, Soma K (1998) Confocal laser scanning-microscopic observations on the three-dimensional distribution of oxytalan fibres in mouse periodontal ligament. Arch Oral Biol 43:811–817

    Article  PubMed  CAS  Google Scholar 

  • Chen CT, Bhargava M, Lin PM, Torzilli PA (2003) Time, stress, and location dependent chondrocyte death and collagen damage in cyclically loaded articular cartilage. J Orthop Res 21:888–898

    Article  PubMed  CAS  Google Scholar 

  • Chiang EH, Laing TJ, Meyer CR, Boes JL, Rubin JM, Adler RS (1997) Ultrasonic characterisation of in vitro osteoarthritic articular cartilage with validation by confocal microscopy. Ultrasound Med Biol 23:205–213

    Article  PubMed  CAS  Google Scholar 

  • Clarke IC (1974) Articular cartilage: a review and scanning electron microscope study. J Anat 118:261–280

    PubMed  CAS  Google Scholar 

  • Denk W, Strickler J, Webb W (1990) Two-photon laser scanning fluorescence microscopy. Science 248:73–76

    Article  PubMed  CAS  Google Scholar 

  • Dolber PC, Spach MS (1993) Conventional and confocal fluorescence microscopy of collagen fibers in the heart. J Histochem Cytochem 41:465–469

    PubMed  CAS  Google Scholar 

  • Dougados M, Ayral X, Listrat V, Gueguen A, Bahuaud J, Beaufils P, Beguin JA, Bonvarlet JP, Boyer T, Coudane H, Delaunay C, Dorfmann H, Dubos JP, Frank A, Kempf JF, Locker B, Prudhon JL, Thiery J (1994) The SFA system for assessing articular cartilage lesions at arthroscopy of the knee, arthroscopy. J Arthrosc Relat Surg 10:69–77

    Article  CAS  Google Scholar 

  • Dunn AK, Wallace VP, Coleno M, Berns MW, Tromberg BJ (2000) Influence of optical properties on two-photon fluorescence imaging in turbid samples. Appl Opt 39:1194–1201

    Article  PubMed  CAS  Google Scholar 

  • Fazzalari NL, Parkinson IH (1997) Fractal properties of subchondral cancellous bone in severe osteoarthritis of the hip. J Bone Miner Res 12:632–640

    Article  PubMed  CAS  Google Scholar 

  • Fujii H, Wood DJ, Papadimitriou JM, Zheng MH (1998) Technique report: application of confocal laser scanning microscopy in bone. J Musculoskeletal Res 2:65–71

    Article  Google Scholar 

  • Ghiggino KP, Harris MR, Spizzirri PG (1992) Fluorescence lifetime measurements using a novel fiber-optic laser scanning confocal microscope. Rev Sci Instruments 63:2999–3002

    Article  CAS  Google Scholar 

  • Gole MD, Poulsen D, Marzo JM, Ziv I (2004) Chondrocyte viability in press-fit cryopreserved osteochondral allografts. J Orthop Res 22:781–787

    Article  PubMed  Google Scholar 

  • Guilak F (1994) Volume and surface area measurement of viable chondrocytes in situ using geometric modelling of serial confocal sections. J Microsc 173:245–256

    PubMed  CAS  Google Scholar 

  • Guilak F (1995) Compression-induced changes in the shape and volume of the chondrocyte nucleus. J Biomech 28:1529–1541

    Article  PubMed  CAS  Google Scholar 

  • Guilak F, Ratcliffe A, Mow VC (1995) Chondrocyte deformation and local tissue strain in articular cartilage a confocal microscopy study. J Orthop Res 13:410–421

    Article  PubMed  CAS  Google Scholar 

  • Guilak F, Jones WR, Ting-Beall HP, Lee GM (1999) The deformation behaviour and mechanical properties of chondrocytes in articular cartilage. Osteoarthritis Cartilage 7:59–70

    Article  PubMed  CAS  Google Scholar 

  • Hader DP (1992) Image analysis in biology. CRC Press, Boca Raton, pp 17–21

    Google Scholar 

  • Hambach L, Neureiter D, Zeiler G, Kirchner T, Aigner T (1998) Severe Disturbance of the distribution and expression of type VI collagen chains in osteoarthritic articular cartilage. Arthritis Rheum 41:986–996

    Article  PubMed  CAS  Google Scholar 

  • Harvath L (1997) Overview of fluorescence analysis with the confocal microscope. In: Javois LC (ed) Methods in molecular biology. Humana Press, Totowa, New Jersey, pp 1–69

    Google Scholar 

  • Hedlund H, Bismar H, Mengarelli-Widhilom S, FPR, Svensson O (1994) Studies of the cell columns of articular cartilage using UV-confocal scanning laser microscopy and 3D image processing. Eur J Exp Musculoskel Res 3:93–98

    Google Scholar 

  • Hirsch MS, Hartford Svoboda KK (1993) Confocal microscopy of whole mount embryonic cartilage: intracellular localization of F-actin, chick prolyl hydroxylase and type-II collagen mRNA. Micron 24:587–594

    Article  CAS  Google Scholar 

  • Holloway I, Kayser MV, Lee DA, Bader DL, Bentley G, Knight MM (2004) Increased presence of cells with multiple elongated processes in osteoarthritic femoral head cartilage. Osteoarthritis Cartilage 12:17–24

    Article  PubMed  CAS  Google Scholar 

  • Holst GC (1996) CCD arrays, cameras, and displays. SPIE Optical Engineering Press, Bellingham, Washington

    Google Scholar 

  • Hunziker EB (2001) Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthritis Cartilage 10:432–463

    Article  Google Scholar 

  • Jones CW, Keogh A, Smolinski D, Wu JP, Kirk TB, Zheng MH (2004) Histological assessment of the chondral and connective tissues of the knee by confocal arthroscope. J Mus-culoskelet Res 8:75–86

    Article  Google Scholar 

  • Kajiwara H, Yamaza T, Yoshinari M, Goto T, Iyama S, Atsuta I, Kido MA, Tanaka T (2005) The bisphosphonate pamidronate on the surface of titanium stimulates bone formation around tibial implants in rats. Biomaterials 26:581–587

    Article  PubMed  CAS  Google Scholar 

  • Kamioka H, Honjo T, Takano-Yamamoto T (2001) A three-dimensional distribution of osteocyte processes revealed by the combination of confocal laser scanning microscopy and differential interference contrast microscopy. Bone 28:145–149

    Article  PubMed  CAS  Google Scholar 

  • Kazama JJ, Gejyo F, Ejiri S, Okada M, Ei I, Arakawa M, Ozawa H (1993) Application of confocal laser scanning microscopy to the observation of bone biopsy specimens. Bone 14:885–889

    Article  PubMed  CAS  Google Scholar 

  • Knight MM, Lee DA, Bader DL (1998) The influence of elaborated pericellular matrix on the deformation of isolated articular chondrocytes cultured in agarose. Biochem Biophys Acta 1405:67–77

    Article  PubMed  CAS  Google Scholar 

  • Knight MM, van de Breevaart Bravenboer J, Lee DA, van Osch GJVM, Weinanas H, Bader DL (2002) Cell and nucleus deformation in compressed chondrocyte-alginate constructs: temporal changes and calculation of cell modulus. Biochem Biophys Acta 1570:1–8

    PubMed  CAS  Google Scholar 

  • Konijn GA, Vardaxis NJ, Boon ME, Kok LP, Rietveld DC, Schut JJ (1996) 3-D confocal microscopy for visualisation of bone remodelling. Path Res Pract 192:566–572

    PubMed  CAS  Google Scholar 

  • Korhonen RK, Laasanen MS, Toyras J, Rieppo J, Hirvonon J, Helminen HJ, Jurvelin JS (2002) Comparison of the equilibrium response of articular cartilage in unconfined compression, confined compression and indentation. J Biomech 35:903–909

    Article  PubMed  CAS  Google Scholar 

  • Lee DA, Knight MM, Bolton JF, Idowu BD, Kayser MV, Bader DL (2000) Chondrocyte deformation within compressed agarose constructs at the cellular and sub-cellular levels. J Biomech 33:81–95

    Article  PubMed  CAS  Google Scholar 

  • Lu Y, Edwards III RB, Kalscheur VL, Nho S, Cole BJ, Markel MD (2001) Effect of bipolar radiofrequency energy on human articular cartilage: comparison of confocal laser microscopy and light microscopy. Arthroscopy 17:117–123

    Article  PubMed  CAS  Google Scholar 

  • Manolopoulos V, Wayne Marshall K, Zhang H, Trogadis J, Tremblay L, Doherty PJ (1999) Factors affecting the efficacy of bovine chondrocyte transplantation in vitro. Osteoarthritis Cartilage 7:453–460

    Article  PubMed  CAS  Google Scholar 

  • Mawhinney WHB, Ellis HA (1983) A technique for plastic embedding of mineralised bone. J Clin Pathol 37:1197–1199

    Article  Google Scholar 

  • Minsky M (1988) Memoir on inventing the confocal scanning microscope. Scanning 10:128–138

    Google Scholar 

  • Mori R, Ochi M, Sakai Y, Adachi N, Uchio Y (1999) Clinical significance of magnetic resonance imaging (MRI) for focal chondral lesions. Magn Reson Imaging 17:1135–1140

    Article  PubMed  CAS  Google Scholar 

  • Nash LG, Phillips MN, Nicholoson H, Barnett R, Zhang M (2004) Skin ligaments: regional distribution and variation in morphology. Clin Anat 17:287–293

    Article  PubMed  Google Scholar 

  • Niyibizi C, Visconti CS, Kavalkovich K, Woo SL-Y (1994) Collagens in an adult bovine medial collateral ligament: immunofluorescence localization by confocal microscopy reveals that type XIV collagen predominates at the ligament-bone junction. Matrix Biol 14:743–751

    Article  Google Scholar 

  • Niyibizi C, Visconti CS, Gibson G, Kavalkovich K (1996) Identification and immunolocalization of type X collagen at the ligament-bone interface. Biochem Biophys Res Commun 222:584–589

    Article  PubMed  CAS  Google Scholar 

  • Pastoureau P, Leduc S, Chomel A, De Ceuninck F (2003) Quantitative assessment of articular cartilage and subchondral bone histology in the meniscectomized guinea pig model of osteoarthritis. Osteoarthritis Cartilage 11:412–423

    Article  PubMed  CAS  Google Scholar 

  • Poole CA, Ayad S, Gilbert RT (1992) Chondrons from articular cartilage. Immunohistochemical evaluation of type VI collagen organisation in isolated chondrons by light, confocal and electron microscopy. J Cell Sci 103:1101–1110

    PubMed  CAS  Google Scholar 

  • Provenzano PP, Heisey D, Hayashi K, Lakes R, Ray Vanderby RJ (2002) Subfailure damage in ligament: a structural and cellular evaluation. J Appl Physiol 92:362–371

    PubMed  Google Scholar 

  • Rigaut JP, Carvajal-Gonzalea S, Vassy J (1992) Confocal image cytometry: quantitative analysis of three-dimensional images obtained by confocal scanning microscopy. In: Hader DP (ed) Image analysis in biology. CRC Press, Boca Raton, pp 109–133

    Google Scholar 

  • Shaw P (1994) Deconvolution in 3-D optical microscopy. Histochem J 26:687–694

    Article  PubMed  CAS  Google Scholar 

  • Sheppard CJR (1994) Confocal microscopy: basic principles and system performance. In: Cheng PC, Lin TH, Wu WL, Wu JL (eds) Multidimensional microscopy. Springer, Berlin Heidelberg New York, 1–19

    Google Scholar 

  • Smolinski D, Wu JP, Jones CW, Zheng MH, O’Hara LJ, Miller K (2003) The confocal arthroscope as a cartilage optical biopsy tool. Osteoarthritis Cartilage 11:S111–S112

    Article  Google Scholar 

  • Soler C, Daczewska M, Da Ponte JP, Dastugue B, Jagla K (2004) Coordinated development of muscles and tendons of the Drosophila leg. Development 131:6041–6051

    Article  PubMed  CAS  Google Scholar 

  • Stockwell RA (1979) The biology of cartilage cells. Cambridge University Press, Cambridge

    Google Scholar 

  • Takeshita F, Iyama S, Ayukawa Y, Akedo H, Suetsugu T (1997) Study of bone formation around dense hydroxyapatite implants using light microscopy, image processing and confocal laser scanning microscopy. Biomaterials 18:317–322

    Article  PubMed  CAS  Google Scholar 

  • Visconti CS, Kavalkovich K, Wu JJ, Niyibizi C (1996) Biochemical analysis of collagens at the ligament-bone interface reveals presence of cartilage-specific collagens. Arch Biochem Biophys 328:135–142

    Article  CAS  Google Scholar 

  • Zheng MH, Bruining HG, Cody SH, Brankov B, Wood DJ, Papadimitriou JM (1997) A rapid method for the assessment of bone architecture by confocal microscopy. Histochem J 29:639–643

    Article  PubMed  CAS  Google Scholar 

  • Ziopus P (2001) Accumulation of in vivo fatigue microdamage and its relation to biomechanical properties in ageing human cortical bone. J Microsc 201:270–278

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Hao Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jones, C.W., Yip, K.H.M., Xu, J., Zheng, MH. (2007). Assessment of Bone, Cartilage, Tendon and Bone Cells by Confocal Laser Scanning Microscopy. In: Qin, L., Genant, H.K., Griffith, J.F., Leung, K.S. (eds) Advanced Bioimaging Technologies in Assessment of the Quality of Bone and Scaffold Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45456-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45456-4_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-45454-0

  • Online ISBN: 978-3-540-45456-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics