Skip to main content

Bio-imaging Technologies in Studying Bone-Biomaterial Interface: Applications in Experimental Spinal Fusion Model

  • Chapter
Advanced Bioimaging Technologies in Assessment of the Quality of Bone and Scaffold Materials
  • 2490 Accesses

Abstract

Spinal fusion in orthopedic surgery is commonly used to treat spinal deformity and degenerative diseases such as scoliosis and degenerative disc disease. To advance surgical and outcome efficacy and study the biological regulations, different animal models of spinal fusion have been established, including rats, rabbits, dogs, sheep, goats, and even non-human primates. With novel biological factors, biomaterials, biophysical devices and gene therapy, and stem-cell-based-therapy being developed, many medical imaging assessment techniques are being adopted further to evaluate their potential in facilitating spinal fusion experimentally before clinical application. Many bio-imaging evaluation technologies have been developed and their potential has been explored in evaluation of bone and biomaterial interface integration both preclinically and clinically. This chapter reviews some of the conventional and advanced techniques being applied for evaluation of rate and quality of spinal fusion, especially the experimental spinal fusion models based on our own studies. These techniques are summarized in the following categories in studying fusion complex or materials properties: (a) low resolution X-ray; quantitative CT, MRI, and clinical densitometry; (b) high-resolution micro-CT, 2D and 3D histomorphometry with both static and dynamic indices; and (c) macro- and microbiomechanical tests. The general advantages and limitations of the technologies are also briefly summarized. This overview might serve as a reference for future studies concerning study design and selection of technologies for qualitative and quantitative evaluation of spinal fusion based on availability of these methods and potential local and international collaborations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Boden SD (1998) Bone repair and enhancement clinical trial design. Spine applications. Clin Orthop 355(Suppl):S336–S346

    PubMed  Google Scholar 

  • Boden SD (2002) Overview of the biology of lumbar spine fusion and principles for selecting a bone graft substitute. Spine 27(16 Suppl 1):S26–S31

    Article  PubMed  Google Scholar 

  • Boden SD, Schimandle JH (1995) Biologic enhancement of spinal fusion. Spine 20(24 Suppl):113S–123S

    Article  PubMed  CAS  Google Scholar 

  • Boden SD, Schimandle JH, Hutton WC (1995) An experimental rabbit lumbar intertransverse process spinal fusion model. Radiographic, histologic, and biomechanical healing characteristics. Spine 20(4):412–420

    Article  PubMed  CAS  Google Scholar 

  • Boden SD, Martin GJ Jr, Morone M, Ugbo JL, Titus L, Hutton WC (1999a) The use of coralline hydroxyapatite with bone marrow, autogenous bone graft, or osteoinductive bone protein extract for posterolateral lumbar spine fusion. Spine 24(4):320–327

    Article  PubMed  CAS  Google Scholar 

  • Boden SD, Martin GJ Jr, Morone MA, Ugbo JL, Moskovitz PA (1999b) Posterolateral lumbar intertransverse process spine arthrodesis with recombinant human bone morphogenetic protein 2/hydroxyapatite-tricalcium phosphate after laminectomy in the nonhuman primate. Spine 24(12):1179–1185

    Article  PubMed  CAS  Google Scholar 

  • Chan CW, Lee KM, Yeung HY, Chiu YM, Qin L, Leung KS, Cheng JCY (2003) Low intensity pulsed ultrasound enhanced the increase in bone volume of spinal processes with implantation of calcium phosphate bioceramics in rabbits posterior spinal fusion model. Hong Kong J Orthop Surg 7(Suppl):S112

    Google Scholar 

  • Chan CW, Lee KM, Yeung HY, Qin L, Leung KS, Cheng JCY (2004) Low-intensity pulsed ultrasound increased fusion mass in hydroxyapatite/tricalcium phosphate implanted posterior spinal fusion. Hong Kong J Orthop Surg 8:S12

    Google Scholar 

  • Chan CW, Fan HB, Lee KM, Qin L, Wong KHK, Yeung HY, Hu YY, Cheng JCY. (2005a) Stem cell based therapy in posterior therapy in posterior spinal fusion: an animal study. Hong Kong J Orthop Surg 9:S28

    Article  Google Scholar 

  • Chan CW, Yeung HY, Lee KM, Chiu YM, Guo X, Chow P, Tabata Y, Cheng J (2005b) Temporal and spatial expression pattern of VEGF and VEGF receptor in the posterior spinal fusion with allograft. Key Eng Mater 288–289:491–494

    Google Scholar 

  • Chen WJ, Lai PL, Chang CH, Lee MS, Chen CH, Tai CL (2002) The effect of hyperbaric oxygen therapy on spinal fusion: using the model of posterolateral intertransverse fusion in rabbits. J Trauma Injury Infect Crit Care 52(2):333–338

    Article  Google Scholar 

  • Cheng JCY, Qin L (2002) Biotechnologies in studying bone-biomaterial interface in experimental spinal fusion: a review. Proc 12th Interdisciplinary Research Conference on Bio-materials (GRIBIO 2002), 14–17 March 2002, Shanghai, China, pp 70–72

    Google Scholar 

  • Cheng JCY, Qin L, Cheung SK, Sher A, Lee SM, Ng E, Guo X (2000) Generalized low areal and volumetric bone mineral density in adolescent idiopathic scoliosis. J Bone Miner Res 15(8):1587–1595

    Article  PubMed  CAS  Google Scholar 

  • Cheng JCY, Guo X, Law LP, RN Rosier (2002) How does recombinant human bone morphogenetic protein-4 enhance posterior spinal fusion? Spine 27(5):467–474

    Article  PubMed  Google Scholar 

  • Collier JH, Camp JP, Hudson TW, Schmidt CE (2002) Synthesis and characterization of polypyrrole-hyaluronic acid composite biomaterials for tissue engineering applications. J Biomed Mater Res 50(4):574–584

    Article  Google Scholar 

  • Cook SD, Salkeld SL, Patron LP, Ryaby JP, Whitecloud TS (2001) Low-intensity pulsed ultrasound improves spinal fusion. Spine J 1(4):246–254

    Article  PubMed  CAS  Google Scholar 

  • Dickson GR (1984) Methods of calcified tissue preparation. Elsevier, Amsterdam

    Google Scholar 

  • Glazer PA, Spencer UM, Alkalay RN, Schwardt J (2001) In vivo evaluation of calcium sulfate as a bone graft substitute for lumbar spinal fusion. Spine J 1(6):395–401

    Article  PubMed  CAS  Google Scholar 

  • Greenwald AS, Boden SD, Goldberg VM, Khan Y, Laurencin CT, Rosier RN (2001) American Academy of Orthopaedic Surgeons. The Committee on Biological Implants. Bone-graft substitutes: facts, fictions, and applications. J Bone Joint Surg [Am] 83ASuppl 2 Pt 2:98–103

    Google Scholar 

  • Guo LH, Guo X, Leng Y, Cheng JC, Zhang X (2001) Nanoindentation study of interfaces between calcium phosphate and bone in an animal spinal fusion model. J Biomed Mater Res 54(4):554–559

    Article  PubMed  CAS  Google Scholar 

  • Guo X, Lee KM, Law LP, RN Rosier, Cheng JCY (2002) Recombinant human bone morphogenetic protein-4 (rhBMP-4) enhanced posterior spinal fusion without decortication. J Orthop Res 20(4):740–746

    Article  PubMed  CAS  Google Scholar 

  • Hasharoni A, Zilberman Y, Turgeman G, Helm GA, Liebergall M, Gazit D (2005) Murine spinal fusion induced by engineered mesenchymal stem cells that conditionally express bone morphogenetic protein-2. J Neurosurg. Spine 3(1):47–52

    Article  PubMed  Google Scholar 

  • Hodges SD, Eck JC, Humphreys SC (2003) Use of electrical bone stimulation in spinal fusion. J Am Acad Orthop Surg 11(2):81–88

    PubMed  Google Scholar 

  • Iyama S, Takeshita F, Ayukawa Y, Kido MA, Suetsugu T, Tanaka T (1997) A study of the regional distribution of bone formed around hydroxyapatite implants in the tibiae of streptozotocin-induced diabetic rats using multiple fluorescent labeling and confocal laser scanning microscopy. J Periodontol 68(12):1169–1175

    PubMed  CAS  Google Scholar 

  • Jaecques SV, Van Oosterwyck H, Muraru L, Van Cleynenbreugel T, De Smet E, Wevers M, Naert I, Vander Sloten J (2004) Individualised, micro CT-based finite element modellingas a tool for biomechanical analysis related to tissue engineering of bone. Biomaterials 25(9):1683–1696

    Article  PubMed  CAS  Google Scholar 

  • Jung H, Kim HJ, Hong S, Kim KD, Moon HS, Je JH, Hwu Y (2003) Osseointegration assessment of dental implants using a synchrotron radiation imaging technique: a preliminary study. Int J Oral Maxillofac Implants 18(1):121–126

    PubMed  Google Scholar 

  • Kandziora F, Pflugmacher R, Scholz M, Schollmeier G, Schmidmaier G, Duda G, Raschke M, Haas NP (2003) Dose-dependent effects of combined IGF-I and TGF-betal application in a sheep cervical spine fusion model. Eur Spine J 12(5):464–473

    Article  PubMed  CAS  Google Scholar 

  • Katz JL, Meunier A (1997) Scanning acoustic microscopy of human and canine cortical bone microstructure at high frequencies. In: Lowet G et al. (eds) Bone research in biomechanics. IOS Press, Amsterdam, pp 123–137

    Google Scholar 

  • Linovitz RJ, Peppers TA (2002) Use of an advanced formulation of beta-tricalcium phosphate as a bone extender in interbody lumbar fusion. Orthopedics 25(5 Suppl):585–589

    Google Scholar 

  • Linovitz RJ, Pathria M, Bernhardt M, Green D, Law MD, McGuire RA, Montesano PX, Rechtine G, Salib RM, Ryaby JT, Faden JS, Ponder R, Muenz LR, Magee FP, Garfin SA (2002) Combined magnetic fields accelerate and increase spine fusion: a double-blind, randomized, placebo controlled study. Spine 27(13):1383–1389

    Article  PubMed  Google Scholar 

  • Ludwig SC, Boden SD (1999) Osteoinductive bone graft substitutes for spinal fusion: a basic Science summary. Orthop Clin North Am 30(4):635–645

    Article  PubMed  CAS  Google Scholar 

  • Magin MN, Delling G (2001) Improved lumbar vertebral interbody fusion using rhOP-1: a comparison of autogenous bone graft, bovine hydroxylapatite (Bio-Oss), and BMP-7 (rhOP-1) in sheep. Spine 26(5):469–478

    Article  PubMed  CAS  Google Scholar 

  • Meding JB, Stambough JL (1993) Critical analysis of strut grafts in anterior spinal fusions. J Spinal Disord 6(2):166–174

    Article  PubMed  CAS  Google Scholar 

  • Moazzaz P, Gupta MC, Gilotra MM, Gilotra MN, Maitra S, Theerajunyaporn T, Chen JL, Reddi AH, Martin RB (2005) Estrogen-dependent actions of bone morphogenetic protein-7 on spine fusion in rats. Spine. 30(15):1706–1711

    Article  PubMed  Google Scholar 

  • Ortiz MC, Garcia-Sanz A, Bentley MD, Fortepiani LA, Garcia-Estan J, Ritman EL, Romero JC, Juncos LA (2000) Microcomputed tomography of kidneys following chronic bile duct ligation. Kidney Int 58(4):1632–1640

    Article  PubMed  CAS  Google Scholar 

  • Parfitt AM (1983) The physiologic and clinical significance of bone histomorphometric data. In: Recker RR (ed) Bone histomorphometry: techniques and interpretation. CRC Press, Boca Raton, pp 143–223

    Google Scholar 

  • Qin L, Leung KS, Chan CW, Fu LK, Rosier RN (1999) Enlargement of remaining patella after partial patellectomy in rabbits. Med Sci Sports Exer 31(4):502–506

    Article  CAS  Google Scholar 

  • Qin L, Hung LK, Leung KS, Guo X, Bumrerraj S, Katz JL (2001) Staining intensity of individual osteons correlated with elastic properties and degrees of mineralization. J Bone Miner Metabol 19(6):359–364

    Article  CAS  Google Scholar 

  • Qin L, Bumrerraj S, Leung KS, Katz JL (2004) Grey levels of osteons correlated with their elastic properties: a scanning acoustic micrography study. J Bone Miner Metabol 22(2):86–89

    Article  Google Scholar 

  • Qin L, Fok PK, Lu HB, Shi SQ, Leng Y, Leung KS (2006) Low intensity pulsed ultrasound increases the matrix hardness of the healing tissues at bone-tendon insertion: a partial patellectomy model in rabbits. Clin Biomechan 21(4):387–394

    Article  Google Scholar 

  • Recum AF von (1999) Handbook of biomaterials evaluation: scientific, technical, and clinical testing of implant materials, 2nd edn, Taylor and Francis, Philadelphia

    Google Scholar 

  • Salamon ML, Althausen PL, Gupta MC, Laubach J (2003) The effects of BMP-7 in a rat posterolateral intertransverse process fusion model. J Spinal Disord Tech 16(1):90–95

    PubMed  Google Scholar 

  • Sandhu HS, Kanim LE, Toth JM, Kabo JM, Liu D, Delamarter RB, Dawson EG (1997) Experimental spinal fusion with recombinant human bone morphogenetic protein-2 without decortication of canine osseous elements. Spine 22(11):1171–1180

    Article  PubMed  CAS  Google Scholar 

  • Sandhu HS, Khan SN, Suh DY, Boden SD (2001) Demineralized bone matrix, bone morphogenetic proteins, and animal models of spine fusion: an overview. Eur Spine J 10(Suppl 2):S122–S131

    PubMed  Google Scholar 

  • Schmidt C, Priemel M, Kohler T, Weusten A, Maller R, Amling M, Eckstein F (2003) Precision and accuracy of peripheral quantitative computed tomography (pQCT) in the mouse skeleton compared with histology and microcomputed tomography (microCT). J Bone Miner Res 18(8):1486–1496

    Article  PubMed  Google Scholar 

  • Suh DY, Boden SD, Louis-Ugbo J, Mayr M, Murakami H, Kim HS, Minamide A, Hut-ton WC (2002) Delivery of recombinant human bone morphogenetic protein-2 using a compression-resistant matrix in posterolateral spine fusion in the rabbit and in the non-human primate. Spine 27(4):353–360

    Article  PubMed  Google Scholar 

  • Siu WS, Qin L, Cheung WH, Leung KS (2004) Deterioration of microarchitecture of cancellous bone in OVX goats measured with microCT and pQCT. Bone 35(1):21–26

    Article  PubMed  CAS  Google Scholar 

  • Takagi M, Santavirta S, Ida H, Ishii M, Takei I, Niissalo S, Ogino T, Konttinen YT (2001) High-turnover periprosthetic bone remodeling and immature bone formation around loose cemented total hip joints. J Bone Miner Res 16(1):79–88

    Article  PubMed  CAS  Google Scholar 

  • Toribatake Y, Hutton WC, Tomita K, Boden SD (1998) Vascularization of the fusion mass in a posterolateral intertransverse process fusion. Spine 23(10):1149–1154

    Article  PubMed  CAS  Google Scholar 

  • Turner CH, Rho J, Takano Y, Tsui TY, Pharr GM (1999) The elastic properties of trabecular and cortical bone tissues are similar: results from two microscopic measurement techniques. J Biomech 32(4):437–441

    Article  PubMed  CAS  Google Scholar 

  • Vaccaro AR, Sharan AD, Tuan RS, Kang JD, An HS, Morone MA, Savas PE, Hilibrand AS, Abitbol JJ (2001) The use of biologic materials in spinal fusion. Orthopedics 24(2):191–197

    PubMed  CAS  Google Scholar 

  • Wang RR, Meyers E, Katz JL (1998) Scanning acoustic microscopy study of titanium-ceramic interface of dental restorations. J Biomed Mate Res 42(4):508–516

    Article  CAS  Google Scholar 

  • Yeung HY, Cheng JCY, Guo X, Lee KM, Chiu YM, Chan CW, Chow PY, Tabata Y (2003) Enhanced vascularization in posterior spinal fusion model by hydrogel incorporated with vascular endothelial cell growth factor. J Bone Miner Res 18(Suppl):S301

    Google Scholar 

  • Yeung HY, Qin L, Lee SM, Zhang M, Leung KS, Cheng JCY (2005) Novel approach for quantification of porosity for biomaterial implants using microcomputed tomography (µCT) J Biomed Mater Res B Appl Biomater 75B(2):234–242

    Article  CAS  Google Scholar 

  • Zerwekh JE, Kourosh S, Scheinberg R, Kitano T, Edwards ML, Shin D, Selby DK (1992) Fibrillar collagen-biphasic calcium phosphate composite as a bone graft substitute for spinal fusion. J Orthop Res 10(4):562–572

    Article  PubMed  CAS  Google Scholar 

  • Zetterqvist L, Anneroth G, Nordenram A, Wroblewski R (1995) X-ray microanalytical and morphological observations of the interface region between ceramic implant and bone. Clin Oral Implants Res 6(2):104–113

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun Wai Chan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chan, C.W., Cheng, J.CY., Yeung, HY., Qin, L. (2007). Bio-imaging Technologies in Studying Bone-Biomaterial Interface: Applications in Experimental Spinal Fusion Model. In: Qin, L., Genant, H.K., Griffith, J.F., Leung, K.S. (eds) Advanced Bioimaging Technologies in Assessment of the Quality of Bone and Scaffold Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45456-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45456-4_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-45454-0

  • Online ISBN: 978-3-540-45456-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics