Skip to main content

Quantification of Porosity, Connectivity and Material Density of Calcium Phosphate Ceramic Implants Using Micro-Computed Tomography

  • Chapter
Advanced Bioimaging Technologies in Assessment of the Quality of Bone and Scaffold Materials

Abstract

Calcium phosphate ceramics have been widely investigated in orthopaedic tissue engineering and surgery as bone extensor. Attention has been given to manufacturing of a porous ceramic that mimics the trabecular bone structure for better osteoconduction. Although different methods have been applied to manufacture the porous structure, they have been unable to quantify the pores and their interconnection within the ceramics. With the advances in biomedical imaging technologies, the study attempted to quantify the pore structure of different ceramics using high-resolution micro-computed tomography (micro-CT). Three kinds of ceramic blocks with product names (BSC, ChronOS and THA, respectively) were synthesized by three methods from three different manufactures and evaluated in the study. The specification claimed that the porosity of the ceramic ranged from 40 to 80%. Six blocks of each ceramic were evaluated by conventional water immersion method and µCT. The pore size and connectivity of the pores were evaluated with standardized protocols. By the water immersion method, the porosity of three ceramics ranged from 60 to 78%. The three-dimensional analysis of the pores by µCT showed that the porosity of the ceramics was 26.2% for BSA, 59.9% for ChronOS, and 67.7%for THA. The pore connectivity was 2.7 for BSC, 59.9% for ChronOS, and 7.1 for THA. The ChronOS had more functional pores (200–400µmin diameter) than the BSC (52.8%) and THA (43.2%) did (p < 0.05). It was shown that the distribution of the pore size of three different ceramics has different characteristics. We speculated that different combinations of structure parameters may have different in vivo properties in osteogensis, whereas the chemical properties of the ceramics cannot be neglected in the in vivo performance. Providing objective information on the functional pores, the micro-CT evaluation serves as a good standard for specification of the ceramic-related implants in the future characterization of scaffold biomaterials for orthopaedic and related medical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adachi N, Ochi M, Deie M, Ito Y (2005) Transplant of mesenchymal stem cells and hydroxyapatite ceramics to treat severe osteochondral damage after septic arthritis of the knee. J Rheumatol 32:1615–1618

    PubMed  Google Scholar 

  • Alam MI, Asahina I, Ohmamiuda K, Takahashi K, Yokota S, Enomoto S (2001) Evaluation of ceramics composed of different hydroxyapatite to tricalcium phosphate ratios as carriers for rh BMP-2. Biomaterials 22:1643–1651

    Article  PubMed  CAS  Google Scholar 

  • Angel MF, Swartz WM, Ramasastry SS, Brown ML, Hanley EN Jr, Herbert DL (1985) Vascularization of tricalcium phosphate, an artificial bone substitute: preliminary observations. Microsurgery 6:175–181

    Article  PubMed  CAS  Google Scholar 

  • Bignon A, Chouteau J, Chevalier J, Fantozzi G, Carret JP, Chavassieux P, Boivin G, Melin M, Hartmann D (2003) Effect of micro-and macroporosity of bone substitutes on their mechanical properties and cellular response. J Mater Sci Mater Med 14:1089–1097

    Article  PubMed  CAS  Google Scholar 

  • Boden SD, Schimandle JH, Hutton WC (1995) An experimental lumbar intertransverse process spinal fusion model. Radiographic, histologic, and biomechanical healing characteristics. Spine 20:412–420

    Article  PubMed  CAS  Google Scholar 

  • Braye F, Irigaray JL, Jallot E, Oudadesse H, Weber G, Deschamps N, Deschamps C, Frayssinet P, Tourenne P, Tixier H, Terver S, Lefaivre J, Amirabadi A (1996) Resorption kinetics of osseous substitute: natural coral and synthetic hydroxyapatite. Biomaterials 17:1345–1350

    Article  PubMed  CAS  Google Scholar 

  • Bruder SP, Kraus KH, Goldberg VM, Kadiyala S (1998a) The effect of implants loaded with autologous mesenchymal stem cells on the healing of canine segmental bone defects. J Bone Joint Surg Am 80:985–996

    PubMed  CAS  Google Scholar 

  • Bruder SP, Kurth AA, Shea M, Hayes WC, Jaiswal N, Kadiyala S (1998b) Bone regeneration by implantation of purified, culture-expanded human mesenchymal stem cells. J Orthop Res 16:155–162

    Article  PubMed  CAS  Google Scholar 

  • Cancedda R, Mastrogiacomo M, Bianchi G, Derubeis A, Muraglia A, Quarto R (2003) Bone marrow stromal cells and their use in regenerating bone. Novartis Found Symp 249:133–143

    Article  PubMed  Google Scholar 

  • Cheng JCY, Guo X, Law LP, Lee KM, Chow DH, Rosier R (2002) How does recombinant human bone morphogenetic protein-4 enhance posterior spinal fusion? Spine 27:467–474

    Article  PubMed  Google Scholar 

  • Engelke K, Graeff W, Meiss L, Hahn M, Delling G (1993) High spatial resolution imaging of bone mineral using computed microtomography. Comparison with microradiography and undecalcified histologic sections. Invest Radiol 28:341–349

    Article  PubMed  CAS  Google Scholar 

  • Erbe EM, Marx JG, Clineff TD, Bellincampi LD (2001) Potential of an ultraporous betatricalcium phosphate synthetic cancellous bone void filler and bone marrow aspirate composite graft. Eur Spine J 10(Suppl 2):S141–S146

    PubMed  Google Scholar 

  • Filmon R, Retailleau-Gaborit N, Grizon F, Galloyer M, Cincu C, Basle MF, Chappard D (2002) Non-connected versus interconnected macroporosity in poly (2-hydroxyethyl methacry-late) polymers. An X-ray microtomographic and histomorphometric study. J Biomater Sci Polym Ed 13:1105–1117

    Article  PubMed  CAS  Google Scholar 

  • Gong H, Zhang M, Yeung HY, Qin L (2005) Regional variations in microstructural properties of vertebral trabeculae with aging. J Bone Miner Metab 23:174–180

    Article  PubMed  Google Scholar 

  • Grenga TE, Zins JE, Bauer TW (1989) The rate of vascularization of coralline hydroxyapatite. Plast Reconstr Surg 84:245–249

    Article  PubMed  CAS  Google Scholar 

  • Guo X (1993) Histomorphological studies on the loosening and infection processes of bony structure around the Schanz screws in the sheep tibiae. Medical School of University Essen, Germany

    Google Scholar 

  • Guo X, Lee KM, Law LP, Chow HK, Rosier R, Cheng CY (2002) Recombinant human bone morphogenetic protein-4 (rhBMP-4) enhanced posterior spinal fusion without decorti-cation. J Orthop Res 20:740–746

    Article  PubMed  CAS  Google Scholar 

  • Hildebrand T, Ruegsegger P (1997) A new method for the model-independent assessment of thickness in three-dimensional images. J Microsc 185:67–75

    Article  Google Scholar 

  • Hildebrand T, Laib A, Muller R, Dequeker J, Ruegsegger P (1999) Direct three-dimensional morphometric analysis of human cancellous bone: microstructural data from spine, femur, iliac crest, and calcaneus. J Bone Miner Res 14:1167–1174

    Article  PubMed  CAS  Google Scholar 

  • Hollister SJ, Lin CY, Saito E, Lin CY, Schek RD, Taboas JM, Williams JM, Partee B, Flanagan CL, Diggs A, Wilke EN, Van Lenthe GH, Muller R, Wirtz T, Das S, Feinberg SE, Krebsbach PH (2005) Engineering craniofacial scaffolds. Orthod Craniofac Res 8:162–173

    Article  PubMed  CAS  Google Scholar 

  • Hulbert SF, Young FA, Mathews RS, Klawitter JJ, Talbert CD, Stelling FH (1970) Potential of ceramic materials as permanently implantable skeletal prostheses. J Biomed Mater Res 4:433–456

    Article  PubMed  CAS  Google Scholar 

  • Klawitter JJ (1979) A basic investigation of bone growth in porous materials. Clemson University, Clemson, South Carolina

    Google Scholar 

  • Klawitter JJ, Hulbert SF (1971) Application of porous ceramics for the attachment of load bearing internal orthopedic applications. J Biomed Mater Res 5:161–229

    Article  Google Scholar 

  • Kuboki Y, Jin Q, Takita H (2001) Geometry of carriers controlling phenotypic expression in BMP-induced osteogenesis and chondrogenesis. J Bone Joint Surg Am 83(Suppl 1):S105–S115

    PubMed  Google Scholar 

  • Kurioka K, Umeda M, Teranobu O, Komori T (1999) Effect of various properties of hydroxyapatite ceramics on osteoconduction and stability. Kobe J Med Sci 45:149–163

    PubMed  CAS  Google Scholar 

  • Lai YM, Qin L, Yeung HY, Lee KK, Chan KM (2005) Regional differences in trabecular BMD and micro-architecture of weight-bearing bone under habitual gait loading: a pQCT and microCT study in human cadavers. Bone 37:274–282

    Article  PubMed  CAS  Google Scholar 

  • LeGeros RZ, Parsons JR, Daculsi G, Driessens F, Lee D, Liu ST, Metsger S, Peterson D, Walker M (1988) Significance of the porosity and physical chemistry of calcium phosphate ceramics. Biodegradation-bioresorption. Ann NY Acad Sci 523:268–271

    Article  PubMed  CAS  Google Scholar 

  • Liu DM (1997) Influence of porous microarchitecture on the in vitro dissolution and biological behavious of porous calcium phosphate. In: Liu DM, Dixit V (eds) Porous materials for tissue engineering. Trans Tech Publications, Zurich, pp 183–208

    Google Scholar 

  • Lu JX, Flautre B, Anselme K, Hardouin P, Gallur A, Descamps M, Thierry B (1999) Role of Interconnections in porous bioceramics on bone recolonization in vitro and in vivo. J Mater Sci Mater Med 10:111–120

    Article  PubMed  CAS  Google Scholar 

  • Morishita T, Honoki K, Ohgushi H, Kotobuki N, Matsushima A, Takakura Y (2006) Tissue engineering approach to the treatment of bone tumors: three cases of cultured bone grafts derived from patients’ mesenchymal stem cells. Artif Organs 30:115–118

    Article  PubMed  Google Scholar 

  • Muller R, Hildebrand T, Ruegsegger P (1994) Non-invasive bone biopsy: a new method to analyse and display the three-dimensional structure of trabecular bone. Physics Med Biol 39:145–164

    Article  CAS  Google Scholar 

  • Muller R, Van Campenhout H, Van Damme B, Van Der PG, Dequeker J, Hildebrand T, Ruegsegger P (1998) Morphometric analysis of human bone biopsies: a quantitative structural comparison of histological sections and micro-computed tomography. Bone 23:59–66

    Article  PubMed  CAS  Google Scholar 

  • Odgaard A, Gundersen HJ (1993) Quantification of connectivity in cancellous bone, with special emphasis on 3-D reconstructions. Bone 14:173–182

    Article  PubMed  CAS  Google Scholar 

  • Oya M, Takahashi M, Iwata Y, Jono K, Hotta T, Yamamoto H, Washio K, Suda A, Matuo Y, Tanaka K, Morimoto M (2002) Mercury intrusion porosimetry used to determine pore-size distribution. Am Ceram Soc Bull 81:52–56

    CAS  Google Scholar 

  • Peterson B, Zhang J, Iglesias R, Kabo M, Hedrick M, Benhaim P, Lieberman JR (2005) Healing of critically sized femoral defects, using genetically modified mesenchymal stem cells from human adipose tissue. Tissue Eng 11:120–129

    Article  PubMed  CAS  Google Scholar 

  • Predecki P, Stephan JE, Auslaender BA, Mooney VL, Kirkland K (1972) Kinetics of bone growth into cylindrical channels in aluminum oxide and titanium. J Biomed Mater Res 6:375–400

    Article  PubMed  CAS  Google Scholar 

  • Qin L, Zhang G, Hung WY, Shi Y, Leung K, Yeung HY, Leung P (2005) Phytoestrogen-rich herb formula “XLGB” prevents OVX-induced deterioration of musculoskeletal tissues at the hip in old rats. J Bone Miner Metab 23(Suppl):55–61

    Article  PubMed  Google Scholar 

  • Qu SX, Chen WQ, Weng J, Zhang XD (1994) The early dissolution of the biphasic calcium ceramics implanted in dogs and rabbits. In: Anderson OH, Yli-Urop A (eds) German Ceramic Society, Cologne, pp 91–95

    Google Scholar 

  • Ruegsegger P, Koller B, Muller R (1996) A microtomographic system for the nondestructive evaluation of bone architecture. Calcif Tissue Int 58:24–29

    Article  PubMed  CAS  Google Scholar 

  • Schmidt C, Priemel M, Kohler T, Weusten A, Muller R, Amling M, Eckstein F (2003) Precision and accuracy of peripheral quantitative computed tomography (pQCT) in the mouse skeleton compared with histology and microcomputed tomography (microCT). J Bone Miner Res 18:1486–1496

    Article  PubMed  Google Scholar 

  • Shors EC (1999) Coralline bone graft substitutes. Orthop Clin North Am 30:599–613

    Article  PubMed  CAS  Google Scholar 

  • Siu WS, Qin L, Cheung WH, Leung KS (2004) A study of trabecular bones in ovariectomized goats with micro-computed tomography and peripheral quantitative computed tomography. Bone 35:21–26

    Article  PubMed  CAS  Google Scholar 

  • Spivak JM, Hasharoni A (2001) Use of hydroxyapatite in spine surgery. Eur Spine J 10(Suppl 2):S197–S204

    Article  PubMed  Google Scholar 

  • Tancred DC, McCormack BA, Carr AJ (1998) A synthetic bone implant macroscopically identical to cancellous bone. Biomaterials 19:2303–2311

    Article  PubMed  CAS  Google Scholar 

  • Tay BK, Patel VV, Bradford DS (1999) Calcium sulfate-and calcium phosphate-based bone substitutes. Mimicry of the mineral phase of bone. Orthop Clin North Am 30:615–623

    Article  PubMed  CAS  Google Scholar 

  • Tsuruga E, Takita H, Itoh H, Wakisaka Y, Kuboki Y (1997) Pore size of porous hydroxyapatite as the cell-substratum controls BMP-induced osteogenesis. J Biochem 121:317–324

    PubMed  CAS  Google Scholar 

  • Urist MRB (1994) The search for and the discovery of bone morphogenetic protein (BMP). In: Urist MRB, O’Connor BT, Burwell RG (eds) Bone grafts, derivatives and substitutes. Butterworth-Heinemann, Oxford, pp 315–362

    Google Scholar 

  • van Blitterswijk CA, Grote JJ, Kuijpers W, Daems WT, de Groot K (1986) Macropore tissue ingrowth: a quantitative and qualitative study on hydroxyapatite ceramic. Biomaterials 7:137–143

    Article  PubMed  Google Scholar 

  • Washbrun W (1921) Note on a method of determining the distribution of pore sizes in a porous material. Proc Natl Acad Sci 7:115–116

    Article  Google Scholar 

  • Wilke A, Orth J, Lomb M, Fuhrmann R, Kienapfel H, Griss P, Franke RP (1998) Biocompat-ibility analysis of different biomaterials in human bone marrow cell cultures. J Biomed Mater Res 40:301–306

    Article  PubMed  CAS  Google Scholar 

  • Yeung HY, Zhu F, Qiu Y, Tang SP, Qin L, Lee KM, Cheng CY (2005) Trabecular bone micro-architecture in adolescent idiopathic scoliosis compared between concave and convex site of the facet joints. Chin J Surg 43:777–780

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiu-Yan Yeung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yeung, HY., Qin, L., Lee, KM., Leung, KS., Cheng, J.CY. (2007). Quantification of Porosity, Connectivity and Material Density of Calcium Phosphate Ceramic Implants Using Micro-Computed Tomography. In: Qin, L., Genant, H.K., Griffith, J.F., Leung, K.S. (eds) Advanced Bioimaging Technologies in Assessment of the Quality of Bone and Scaffold Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45456-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45456-4_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-45454-0

  • Online ISBN: 978-3-540-45456-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics