Skip to main content

Changes of Biological Function of Bone Cells and Effect of Anti-osteoporosis Agents on Bone Cells

  • Chapter
  • 2495 Accesses

Abstract

Osteoporosis is a disorder of bone remodeling in adults, which results from decreased bone formation and/or increased bone resorption. Osteoblast and osteoclast are two major functional cells involved in bone remodeling. Based on the understanding of normal biological functions of bone cells, many traditional western anti-osteoporotic agents and some alternative Chinese herbs were tested with in vitro cultured osteoblasts and osteoclasts. The results showed that diphosphonate (Ibandronate), calcitonin (Elcatonin) and kidney-tonifying herb preparations could greatly inhibit the resorption activity of osteoclasts including decreased TRAP-positive multinucleated osteoclasts, inhibited resorption pits on dentine and osteoclast fusion index, and increased osteoclasts apoptosis, whereas rhPTH(1-34), calcitonin (Miacalcic) and Chinese herb extract Jinjier could significantly enhance bone-forming activity of osteoblasts including increased osteoblast proliferation, enhanced ALP activity and mineralization capability. This indicates that the established in vitro bone cellmodels, including osteoblasts and osteoclasts, provide a rapid and effective screening strategy for anti-osteoporotic agents.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Boyle WJ, Simonet WS, Lacey DL (2003) Osteoclast differentiation and activation. Nature 15:423(6937):337–342

    Article  Google Scholar 

  • Castro-Malaspina H, Gay RE, Resnick G, Kapoor N, Meyers P, Chiarieri D, McKenzie S, Brox-meyer HE, Moore MA (1980) Characterization of human bone marrow fibroblast colony-forming cells (CFU-F) and their progeny. Blood 56:289–301

    PubMed  CAS  Google Scholar 

  • Chen TL (2004) Inhibition of growth and differentiation of osteoprogenitors in mouse bone marrow stromal cell cultures by increased donor age and glucocorticoid treatment. Bone 35(1):83–95

    Article  PubMed  CAS  Google Scholar 

  • Deng HW, Liu YZ (2005) Current topics in bone biology. World Scientific Publishing, UK

    Google Scholar 

  • D’Ippolito G, Schiller PC, Ricordi C, Roos BA, Howard GA (1999) Age-related osteogenic potential of mesenchymal stromal stem cells from human vertebral bone marrow. J Bone Miner Res 14(7):1115–1122

    Article  PubMed  CAS  Google Scholar 

  • Ducy P, Schinke T, Karsenty G (2000) The osteoblast: a sophisticated fibroblast under central surveillance. Science 289:1501–1504

    Article  PubMed  CAS  Google Scholar 

  • Gao JJ, Jin WF, Wang HF (1998) Osteoclast resorption activity evaluation by quantifying re-sorption pits on bone dentine under light microscopy. J Shanghai Med Uni 25(1):71–73

    Google Scholar 

  • Gao JJ, Li LB, Jin WF, Wang BC, Wang HF (2000) The effects of Ibandronate (BM210955) on osteoclasts activity and its related mechanism. J Shanghai Med Uni 27(3):171–173

    CAS  Google Scholar 

  • Gao JJ, Zhou Y, Gu SZ, Jin WF, Wang HF (2002) The effects of Elcatonin on in vitro osteoclasts activity. Chin J Osteoporosis 8(3):248–249

    Google Scholar 

  • Gao JJ, Gu SZ, Zhou Y, Jin WF, Wang HF (2004) The change of rat osteoclasts in number and biological functions with aging. Chin J Geriat 23(3):184–187

    Google Scholar 

  • Jin WF, Gao JJ, Wang HF, Wang BC, Hu MY (1999) The effects of Ibandronate (BM210955) on in vitro osteoclasts resorption activity. Chin J Osteoporosis 5(1):10–12

    Google Scholar 

  • Jin WF, Zhu WQ, Wang HF, Luo HF, Hu CQ (2001) The effects of kidney-tonifying herb HU-ECS on osteoblasts proliferation, differentiation and mineralization. Chin J Osteoporosis 7(1):9–11

    Google Scholar 

  • Karsenty G (2001) Minireview: transcriptional control of osteoblast differentiation. Endocrinology 142(7):2731–2733

    Article  PubMed  CAS  Google Scholar 

  • Lee SK, Goldring SR, Lorenzo JA (1995) Expression of the calcitonin receptor in bone marrow cell cultures and in bone: a specific marker of the differentiated osteoclast that is regulated by calcitonin. Endocrinology 136(10):4572–4581

    Article  PubMed  CAS  Google Scholar 

  • Li LB, Gao JJ, Jin WF, Wang HF (1999). Gamma(γ) radiation induced apoptosis of osteoclasts. J Radiat Res Radiat Proc 17(1):45–47

    CAS  Google Scholar 

  • Lindunger A, MacKay CA, Ek-Rylander B, Andersson G, Marks SC Jr (1990) Histochemistry and biochemistry of tartrate-resistant acid phosphatase (TRAP) and tartrate-resistant acid adenosine triphosphatase (TrATPase) in bone, bone marrow and spleen: implications for osteoclast ontogeny. Bone Miner 10(2):109–119

    Article  PubMed  CAS  Google Scholar 

  • Mundy GR (1996) Regulation of bone formation by bone morphogenetic proteins and other growth factors. Clin Orthop Relat Res 324:24–28

    Article  PubMed  Google Scholar 

  • Nefussi JR, Brami G, Modrowski D, Oboeuf M, Forest N (1997) Sequential expression of bone matrix proteins during rat calvaria osteoblast differentiation and bone nodule formation in vitro. J Histochem Cytochem 45(4):493–503

    PubMed  CAS  Google Scholar 

  • Raisz LG (2005) Pathogenesis of osteoporosis: concepts, conflicts, and prospects. J Clin Invest 115(12):3318–3325

    Article  PubMed  CAS  Google Scholar 

  • Recker RR (1996) Bone remodeling abnormalities in osteoporosis. Osteoporosis. Academic Press, California, pp 703–712

    Google Scholar 

  • Seeman E (2003) Invited review: Pathogenesis of osteoporosis. J Appl Physiol 95(5):2142–2151

    PubMed  Google Scholar 

  • Sheng H, Wang HF, Gao JJ, Jin WF, Gu SZ (2003a) The effects of different doses of dexametha-some on the differentiation of rat mesenchymal stem cells into osteoblasts. J Fudan Uni 30(2):164–166

    Google Scholar 

  • Sheng H, Wang HF, Zhu GY (2003b) Effects of rhPTH(1-34) on rat bone marrow stromal cells differentiation into osteoblasts. Chin J Bone Miner Res 1(2):56–58

    Google Scholar 

  • Sugawara Y, Suzuki K, Koshikawa M, Ando M, Iida J (2002) Necessity of enzymatic activity of alkaline phosphatase for mineralization of osteoblastic cells. Jpn J Pharmacol 88(3):262–269

    Article  PubMed  CAS  Google Scholar 

  • Teitelbaum SL (2000) Bone resorption by osteoclasts. Science 289:1504–1507

    Article  PubMed  CAS  Google Scholar 

  • Vaananen HK, Zhao H, Mulari M, Halleen JM (2000) The cell biology of osteoclast function. J Cell Sci 113:377–381

    PubMed  CAS  Google Scholar 

  • Walsh S, Jordan GR, Jefferiss C, Stewart K, Beresford JN (2001) High concentrations of dexamethasone suppress the proliferation but not the differentiation or further maturation of human osteoblast precursors in vitro: relevance to glucocorticoid-induced osteoporosis. Rheumatol (Oxford) 40(1):74–83

    Article  CAS  Google Scholar 

  • Wang HF, Jin WF, Gao JJ (1999) The evaluation of anti-osteoporosis agents using in vitro osteoblasts and osteoclasts. Chin J Osteoporosis 5(2):58–62

    CAS  Google Scholar 

  • Wang HF, Jin WF, Gao JJ (2001) An atlas of bone cells and cell culture techniques. Shanghai Scientific and Technical Publishers, Shanghai, pp 60–68

    Google Scholar 

  • Yang X, Tare RS, Partridge KA, Roach HI, Clarke NM, Howdle SM, Shakesheff KM, Oreffo RO (2003) Induction of human osteoprogenitor chemotaxis, proliferation, differentiation, and bone formation by osteoblast stimulating factor-1/pleiotropin: J Bone Miner Res 18:47–57

    Article  PubMed  CAS  Google Scholar 

  • Yu MX, Jin WF, Gu SZ, Wang HF (2002) The biological function change of human osteoblasts with aging. Chin J Endocrinol 18(2):116–119

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Fu Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wang, HF., Jin, WA., Gao, JJ., Sheng, H. (2007). Changes of Biological Function of Bone Cells and Effect of Anti-osteoporosis Agents on Bone Cells. In: Qin, L., Genant, H.K., Griffith, J.F., Leung, K.S. (eds) Advanced Bioimaging Technologies in Assessment of the Quality of Bone and Scaffold Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45456-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45456-4_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-45454-0

  • Online ISBN: 978-3-540-45456-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics