Skip to main content

Tissue Polarity in the Retina

  • Chapter
Drosophila Eye Development

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 37))

Abstract

In multicellular organisms, most tissues derived from epithelial cell sheets form highly organized structures that are not only polarized in the apicalbasolateral axis but also display a polarization within the plane of the epithelium (Fig. 1). The function of many organs or tissues requires this additional axis of polarity within the epithelium, namely a uniform polarity of single cells or multicellular units within the plane of the epithelium. This type of polarization of cells is usually referred to as epithelial planar polarity, planar cell polarity, or as mostly used in Drosophila,tissue polarity. Such polarization is evident in most epidermal structures (e.g., the ordered appearance of scales in fish or feathers in birds), in neuroepithelia (e.g., the inner ear epithelium, where the stereocilia bundles are aligned for normal sensitivity to sound) as well as in internal organs (e.g., in the oviduct, with the cilia allowing directional transport of an egg). Another very good example is the exocuticle in insects, as all the respective tissues are derived from the single cell layer epithelial imaginal discs (Adler 1992; Gubb 1993; Eaton 1997). Similarly, the Drosophila retina, as it is derived from a single cell layer epithelium, the eye imaginal disc, displays a tissue or planar polarity (Dietrich 1909). It is an intriguing problem how cells that are hundreds of cell diameters apart adopt the same polarity in the plane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler PN (1992) The genetic control of tissue polarity in Drosophila. BioEssays 14: 735–741

    CAS  Google Scholar 

  • Adler PN, Vinson C, Park WJ, Conover S, Klein L (1990) Molecular structure of frizzled, a Drosophila tissue polarity gene. Genetics 126: 401–416

    PubMed  CAS  Google Scholar 

  • Adler PN, Charlton J, Park WJ (1994) The Drosophila tissue polarity gene inturned functions prior to wing hair morphogenesis in the regulation of hair polarity and number. Genetics 137: 1–8

    Google Scholar 

  • Axelrod J, Matsuno K, Artavanis-Tsakonas S, Perrimon N (1996) Interaction between Wingless and Notch signaling pathways mediated by Dishevelled. Science 271: 1826–1832

    Article  PubMed  CAS  Google Scholar 

  • Axelrod JD, Miller JR, Shulman JM, Moon RT, Perrimon N (1998) Differential requirement of Dishevelled provides signaling specificity in the Wingless and planar cell polarity signaling pathways. Genes Dev 12: 2610–2622

    Article  PubMed  CAS  Google Scholar 

  • Bhanot P, Brink M, Samos CH, Hsieh J-C, Wang Y, Macke JP, Andrew D, Nathans J, Nusse R (1996) A new member of the frizzled family from Drosophila functions as a Wingless receptor. Nature 382: 225–230

    Article  PubMed  CAS  Google Scholar 

  • Bhanot P, Fish M, Jemison JA, Nusse R, Nathans J, Cadigan KM (1999) Frizzled and DFrizzled-2 function as redundant receptors for wingless during Drosophila embryonic development [In Process Citation]. Development 126: 4175–4186

    PubMed  CAS  Google Scholar 

  • Bhat KM (1998) Frizzled and Frizzled2 play a partially redundant role in Wingless signaling and have similar requirements to Wingless in neurogenesis. Cell 95: 1027–1036

    Article  PubMed  CAS  Google Scholar 

  • Blair S (1999) Eye development: Notch lends a handedness. Curr Biol 9: 356–360

    Article  Google Scholar 

  • Boutros M, Mlodzik M (1999) Dishevelled: at the crossroads of divergent intracellular signaling pathways. Mech Dev 83: 27–37

    Article  PubMed  CAS  Google Scholar 

  • Boutros M, Paricio N, Strutt DI, Mlodzik M (1998) Dishevelled activates JNK and discriminates between JNK pathways in planar polarity and wingless signaling. Cell 94: 109–118

    Article  PubMed  CAS  Google Scholar 

  • Chae J, Kim MJ, Goo JH, Collier S, Gubb D, Charlton J, Adler PN, Park WJ (1999) The Drosophila tissue polarity gene starry night encodes a member of the protocadherin family. Development 126: 5421–5429

    PubMed  CAS  Google Scholar 

  • Chen C-N, Struhl G (1999) Wingless transduction by the Frizzled and Frizzled2 proteins of Drosophila. Development 126: 5441–5452

    PubMed  CAS  Google Scholar 

  • Chen CWJ, Jung HS, Jiang TX, Chuong CM (1997) Asymmetric expression of Notch/Delta/Serrate is associated with the anterior-posterior axis of feather buds. Dev Biol 188: 181–188

    Article  PubMed  CAS  Google Scholar 

  • Choi K-W, Benzer S (1994) Rotation of photoreceptor clusters in the developing Drosophila eye requires the nemo gene. Cell 78: 125–136

    Article  PubMed  CAS  Google Scholar 

  • Clandinin TR, Zipursky SL (2000) Afferent growth cone interactions control synaptic specificity in the Drosophila visual system. Neuron 28: 427–436

    Article  PubMed  CAS  Google Scholar 

  • Cooper MTD, Bray SJ (1999) Frizzled regulation of Notch signalling polarizes cell fate in the Drosophila eye. Nature 397: 526–529

    Article  PubMed  CAS  Google Scholar 

  • Couso JP, Martinez Arias A (1994) Notch is required for Wingless signaling in Drosophila. Cell 79: 259–272

    Article  PubMed  CAS  Google Scholar 

  • Dietrich W (1909) Die Facettenaugen der Dipteren. Z Wiss Zool 92: 465–539

    Google Scholar 

  • Eaton S (1997) Planar polarity in Drosophila and vertebrate epithelia. Curr Opin Cell Biol 9 Fanto M, Mlodzik M (1999) Asymmetric Notch activation specifies photoreceptors R3 and R4 and planar polarity in the Drosophila eye. Nature 397: 523–526

    Google Scholar 

  • Fanto M, Mayes CA, Mlodzik M (1998) Linking cell-fate specification to planar polarity: determination of the R3/R4 photoreceptors is a prerequisite for the interpretation of the Frizzled mediated polarity signal. Mech Dev 74: 51–58

    Article  PubMed  CAS  Google Scholar 

  • Fanto M, Weber U, Strutt DI, Mlodzik M (2000) Nuclear signaling by Rac abd Rho GTPases is required in the establishment of epithelial planar polarity in the Drosophila eye. Curr Biol 10 (in press)

    Google Scholar 

  • Gubb D (1993) Genes controlling cellular polarity in Drosophila. Development (Suppl) 1993: 269–277

    Google Scholar 

  • Gubb D, Green C, Huen D, Coulson D, Johnson G, Tree D, Collier S, Roote J (1999) The balance between isoforms of the prickle LIM domain protein is critical for planar polarity in Drosophila imaginal discs. Genes Dev 13: 2315–2327

    Article  PubMed  CAS  Google Scholar 

  • Heberlein U, Moses K (1995) Mechanisms of Drosophila retinal morphogenesis: the virtues of being progressive. Cell 81: 987–990

    Article  PubMed  CAS  Google Scholar 

  • Heisenberg CP, Tada M, Rauch GJ, Saude L, Concha ML, Geisler R, Stemple DL, Smith JC, Wilson SW (2000) Silberblick/Wntl 1 mediates convergent extension movements during zebrafish gastrulation. Nature 405: 76–81

    Article  PubMed  CAS  Google Scholar 

  • Henchcliffe C, Garcia-Alonso L, Tang J, Goodman CS (1993) Genetic analysis of laminin A reveals diverse functions during morphogenesis in Drosophila. Development 118: 325–337

    PubMed  CAS  Google Scholar 

  • Ingham PW (1998) Transducing Hedgehog: the story so far. EMBO J 17: 3505–3511

    Article  PubMed  CAS  Google Scholar 

  • Johnson RL, Scott MP (1998) New players and puzzles in the Hedgehog signaling pathway. Curr Opin Genet Dev 8: 450–456

    Article  PubMed  CAS  Google Scholar 

  • Jones KH, Liu J, Adler PN (1996) Molecular analysis of EMS-induced frizzled mutations in Drosophila melanogaster. Genetics 142: 205–215

    PubMed  CAS  Google Scholar 

  • Kennerdell JR, Carthew RW (1998) Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled2 act in the wingless pathway. Cell 95: 1017–1026

    Article  PubMed  CAS  Google Scholar 

  • Klingensmith J, Nusse R, Perrimon N (1994) The Drosophila segment polarity gene disheveled encodes a novel protein required for response to the wingless signal. Genes Dev 8: 118–130

    Article  PubMed  CAS  Google Scholar 

  • Krasnow RE, Adler PN (1994) A single frizzled protein has a dual role in tissue polarity. Development 120: 1883–1893

    PubMed  CAS  Google Scholar 

  • Krasnow RE, Wong LL, Adler PN (1995) dishevelled is a component of the frizzled signalling pathway in Drosophila. Development 121: 4095–4102

    Google Scholar 

  • Li L, Yuan H, Xie W, Mao J, Caruso AM, McMahon A, Sussman DJ, Wu D (1999) Dishevelled proteins lead to two signalling pathways: regulation of Lef-1 and c-Jun N-terminal kinase in mammalian cells. J Biol Chem 274: 129–134

    Article  PubMed  CAS  Google Scholar 

  • Mlodzik M (1999) Planar polarity in the Drosophila eye: a multifaceted view of signaling specificity and cross-talk. EMBO J 24 (in press)

    Google Scholar 

  • Mlodzik M (2000) Spiny legs and prickled bodies: new insights and complexities in planar polarity establishment. Bioessays 22: 311–315

    Article  PubMed  CAS  Google Scholar 

  • Mueller H, Samanta R, Wieschaus E (1999) Wingless signaling in the Drosophila embryo: zygotic requirements and the role of the frizzled genes. Development 126: 577–586

    Google Scholar 

  • Paricio N, Feiguin F, Boutros M, Eaton S, Mlodzik M (1999) The Drosophila STE20-like kinase Misshapen is required downstream of the Frizzled receptor in planar polarity signaling. EMBO J 18: 4669–4678

    Article  PubMed  CAS  Google Scholar 

  • Reifegerste R, Moses K (1999) The genetics of epithelial polarity and pattern in the Drosophila retina. BioEssays 21: 275–285

    CAS  Google Scholar 

  • Strutt DI, Weber U, Mlodzik M (1997) The role of RhoA in tissue polarity and Frizzled signalling. Nature 387: 292–295

    Article  PubMed  CAS  Google Scholar 

  • Strutt H, Strutt DI (1999) Polarity determination in the Drosophila eye. Curr Opin Genet Dev 9: 442–446

    Article  PubMed  CAS  Google Scholar 

  • Taylor J, Abramova N, Charlton J, Adler PN (1998) Van Gogh: a new Drosophila tissue polarity gene. Genetics 150: 199–210

    PubMed  CAS  Google Scholar 

  • Theisen H, Purcell J, Bennett M, Kansagara D, Syed A, Marsh JL (1994) dishevelled is required during wingless signalling to establish both cell polarity and cell identity. Development 120: 347–360

    Google Scholar 

  • Tomlinson A (1988) Cellular interactions in the developing Drosophila eye. Development 104: 183–193

    PubMed  CAS  Google Scholar 

  • Tomlinson A, Ready DF (1987) Cell fate in the Drosophila ommatidium. Dev Biol 123: 264–275

    Article  PubMed  CAS  Google Scholar 

  • Tomlinson A, Struhl G (1999) Decoding vectorial information from a gradient: sequential roles of the receptors Frizzled and Notch in establishing planar polarity in the Drosophila eye. Development 126: 5725–5738

    PubMed  CAS  Google Scholar 

  • Tomlinson A, Strapps WR, Heemskerk J (1997) Linking Frizzled and Wnt signaling in Drosophila development. Development 124: 4515–4521

    PubMed  CAS  Google Scholar 

  • Treisman JE, Heberlein U (1998) Eye development in Drosophila: formation of the eye field and control of differentiation. Curr Top Dev Biol 39: 119–158

    Article  PubMed  CAS  Google Scholar 

  • Usui T, Shima Y, Shimada Y, Hirano S, Burgess RW, Schwarz TL, Takeichi M, Uemura T (1999) Flamingo, a seven-pass transmembrane cadherin, regulates planar cell polarity under the control of Frizzled. Cell 98: 585–595

    Article  PubMed  CAS  Google Scholar 

  • Vinson CR, Adler PN (1987) Directional non-cell autonomy and the transmission of polarity information by the frizzled gene of Drosophila. Nature 329: 549–551

    Article  PubMed  CAS  Google Scholar 

  • Vinson CR, Conover S, Adler PN (1989) A Drosophila tissue polarity locus encodes a protein containing seven potential transmembrane domains. Nature 338: 263–264

    Article  PubMed  CAS  Google Scholar 

  • Wallingford JB, Rowning BA, Vogeli KM, Rothbacher U, Fraser SE, Harland RM (2000) Dishevelled controls cell polarity during Xenopus gastrulation. Nature 405: 81–85

    Article  PubMed  CAS  Google Scholar 

  • Wang W-J, Liu J, Adler PN (1994) The frizzled gene of Drosophila encodes a membrane protein with an odd number of transmembrane domains. Mech Dev 45: 127–137

    Article  Google Scholar 

  • Weber U, Paricio N, Mlodzik M (2000) Jun mediates Frizzled induced R3/R4 cell fate distinction and planar polarity determination in the Drosophila eye. Development 127 (in press)

    Google Scholar 

  • Wehrli M, Tomlinson A (1998) Independent regulation of anterior/posterior and equatorial/ polar polarity in the Drosophila eye; evidence for the involvement of Wnt signaling in the equatorial/polar axis. Development 125: 1421–1432

    PubMed  CAS  Google Scholar 

  • Wolff T, Ready DF (1991) The beginning of pattern formation in the Drosophila compound eye: the morphogenetic furrow and the second mitotic wave. Development 113: 841–850

    PubMed  CAS  Google Scholar 

  • Wolff T, Ready DF (1993) Pattern formation in the Drosophila retina. In: Martinez-Arias MBA (ed) The development of Drosophila melanogaster. Cold Spring Harbor Press, Cold Spring Harbor, pp 1277–1326

    Google Scholar 

  • Wolff T, Rubin GM (1998) strabismus, a novel gene that regulates tissue polarity and cell fate decisions in Drosophila. Development 125: 1149–1159

    Google Scholar 

  • Yanagawa S, van Leeuwen F, Wodarz A, Klingensmith J, Nusse R (1995) The Dishevelled protein is modified by Wingless signalling in Drosophila. Genes Dev 9: 1087–1097

    Article  PubMed  CAS  Google Scholar 

  • Zeidler MP, Perrimon N, Strutt DI (1999) The four-jointed gene is required in the Drosophila eye for ommatidial polarity specification. Curr Biol 9: 1363–1372

    Article  PubMed  CAS  Google Scholar 

  • Zheng L, Zhang J, Carthew RW (1995) frizzled regulates mirror-symmetric pattern formation in the Drosophila eye. Development 121: 3045–3055

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mlodzik, M. (2002). Tissue Polarity in the Retina. In: Moses, K. (eds) Drosophila Eye Development. Results and Problems in Cell Differentiation, vol 37. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45398-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45398-7_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53640-3

  • Online ISBN: 978-3-540-45398-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics