Skip to main content

The Establishment of Retinal Connectivity

  • Chapter
Drosophila Eye Development

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 37))

Abstract

This chapter describes the developmental, cellular and molecular mechanisms involved in establishing neural connectivity in the adult Drosophila visual system. It concerns itself primarily with the projections of photoreceptor axons into the optic lobe, with an emphasis on the more recent literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson H (1978) Postembryonic development of the visual system of the locust, Schistocerca gregaria. II. An experimental investigation of the formation of the retina-lamina projection. J Embryol Exp Morphol 46: 147–170

    PubMed  CAS  Google Scholar 

  • Braitenberg V (1967) Patterns of projection in the visual system of the fly. I. Retina-lamina projections. Exp Brain Res 3: 271–298

    Article  PubMed  CAS  Google Scholar 

  • Choi KW, Benzer S (1994) Migration of glia along photoreceptor axons in the developing Drosophila eye. Neuron 12: 423–431

    Article  PubMed  CAS  Google Scholar 

  • Clandinin TR, Zipursky SL (2000) Afferent growth cone interactions control synaptic specificity in the Drosophila visual system. Neuron 28: 427–436

    Article  PubMed  CAS  Google Scholar 

  • Cowan WM, Hunt RK (1985) The development of the retinotectal projection: an overview. In: Edelman GM, Gall WE, Cowan WM (eds) Molecular bases of neural development. Wiley, New York, pp 389–428

    Google Scholar 

  • Cutforth T, Gaul U (1997) The genetics of visual system development in Drosophila: specification, connectivity and asymmetry. Curr Opin Neurobiol 7: 48–54

    Article  PubMed  CAS  Google Scholar 

  • Dickson BJ (2001) Rho GTPases in growth cone guidance. Curr Opin Neurobiol 11: 103–110

    Article  PubMed  CAS  Google Scholar 

  • Drescher U, Bonhoeffer F, Muller BK (1997) The Eph family in retinal axon guidance. Curr Opin Neurobiol 7: 75–80

    Article  PubMed  CAS  Google Scholar 

  • Fischbach KF, Technau G (1984) Cell degeneration in the developing optic lobes of the sine oculis and small-optic-lobes mutants of Drosophila melanogaster. Dev Biol 104: 219–239

    Article  PubMed  CAS  Google Scholar 

  • Flanagan JG, Vanderhaeghen P (1998) The ephrins and Eph receptors in neural development. Annu Rev Neurosci 21: 309–345

    Article  PubMed  CAS  Google Scholar 

  • Frost JA, Khokhlatchev A, Stippec S, White MA, Cobb MH (1998) Differential effects of PAK1activating mutations reveal activity-dependent and -independent effects on cytoskeletal regulation. J Biol Chem 273: 28191–28198

    Article  PubMed  CAS  Google Scholar 

  • Garrity PA, Rao Y, Salecker I, McGlade J, Pawson T, Zipursky SL (1996) Drosophila photoreceptor axon guidance and targeting requires the dreadlocks SH2/SH3 adapter protein. Cell 85: 639–650

    Google Scholar 

  • Garrity PA, Lee CH, Salecker I, Robertson HC, Desai CJ, Zinn K, Zipursky SL (1999) Retinal axon target selection in Drosophila is regulated by a receptor protein tyrosine phosphatase. Neuron 22: 707–717

    Article  PubMed  CAS  Google Scholar 

  • Golic HG (1991) Site-specific recombination between homologous chromosomes in Drosophila. Science 252: 958–961

    Article  PubMed  CAS  Google Scholar 

  • Gong Q, Rangarajan R, Seeger M, Gaul U (1999) The netrin receptor frazzled is required in the target for establishment of retinal projections in the Drosophila visual system. Development 126: 1451–1456

    PubMed  CAS  Google Scholar 

  • Hall A (1998) Rho GTPases and the actin cytoskeleton. Science 279: 509–514

    Article  PubMed  CAS  Google Scholar 

  • Hing H, Xiao J, Harden N, Lim L, Zipursky SL (1999) Pak functions downstream of Dock to regulate photoreceptor axon guidance in Drosophila. Cell 97: 853–863

    Article  PubMed  CAS  Google Scholar 

  • Hofbauer A, Campos-Ortega JA (1990) Proliferation pattern and early differentiation of the optic lobes in Drosophila melanogaster. Roux’s Arch Dev Biol 198: 264–274

    Article  Google Scholar 

  • Huang Z, Kunes S (1996) Hedgehog, transmitted along retinal axons, triggers neurogenesis in the developing visual centers of the Drosophila brain. Cell 86: 411–422

    Article  PubMed  CAS  Google Scholar 

  • Huang Z, Kunes S (1998) Signals transmitted along retinal axons in Drosophila: Hedgehog signal reception and the cell circuitry of lamina cartridge assembly. Development 125: 3753–3764

    Google Scholar 

  • Huang Z, Shilo BZ, Kunes S (1998) A retinal axon fascicle uses spitz, an EGF receptor ligand, to construct a synaptic cartridge in the brain of Drosophila. Cell 95: 693–703

    Article  PubMed  CAS  Google Scholar 

  • Kunes S, Steller H (1993) Topography in the Drosophila visual system. Curr Opin Neurobiol 3: 53–59

    Article  PubMed  CAS  Google Scholar 

  • Kunes S, Wilson C, Steller H (1993) Independent guidance of retinal axons in the developing visual system of Drosophila. J Neurosci 13: 752–767

    PubMed  CAS  Google Scholar 

  • Macagno ER (1978) Mechanism for the formation of synaptic projections in the arthropod visual system. Nature 275: 318–320

    Article  PubMed  CAS  Google Scholar 

  • Macagno ER (1979) Cellular interactions and pattern formation in the development of the visual system of Daphnia magna (Crustacea, Branchiopoda). I. Interactions between embryonic retinular fibers and laminar neurons. Dev Biol 73: 206–238

    Article  PubMed  CAS  Google Scholar 

  • Martin KA, Poeck B, Roth H, Ebens AJ, Ballard LC, Zipursky SL (1995) Mutations disrupting neuronal connectivity in the Drosophila visual system. Neuron 14: 229–240

    Article  PubMed  CAS  Google Scholar 

  • Meili R, Ellsworth C, Lee S, Reddy TB, Ma H, Firtel RA (1999) Chemoattractant-mediated transient activation and membrane localization of Akt/PKB is required for efficient chemotaxis to cAMP in Dictyostelium. EMBO J 18: 2092–2105

    Article  PubMed  CAS  Google Scholar 

  • Meinertzhagen I, Hanson I (1993) The development of the optic lobe. In: Martinez Arias A, Bates M (eds) The development of Drosophila melanogaster. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 1363–1490

    Google Scholar 

  • Meyerowitz EM, Kankel DR (1978) A genetic analysis of visual system development in Drosophila melanogaster. Dev Biol 62: 112–142

    Article  PubMed  CAS  Google Scholar 

  • Newsome TP, Asling B, Dickson BJ (2000a) Analysis of Drosophila photoreceptor axon guidance in eye-specific mosaics. Development 127: 851–860

    PubMed  CAS  Google Scholar 

  • Newsome TP, Schmidt S, Dietzl G, Keleman K, Asling B, Debant A, Dickson BJ (2000b) Trio corn-bines with dock to regulate Pak activity during photoreceptor axon pathfinding in Drosophila. Cell 101: 283–294

    Article  PubMed  CAS  Google Scholar 

  • Perez SE, Steller H (1996) Migration of glial cells into retinal axon target field in Drosophila melanogaster. J Neurobiol 30: 359–373

    Article  PubMed  CAS  Google Scholar 

  • Poeck B, Fischer S, Gunning D, Zipursky SL, Salecker I (2001) Glial cells mediate target layer selection of retinal axons in the developing visual system of Drosophila. Neuron 29: 99–113

    Article  PubMed  CAS  Google Scholar 

  • Power ME (1943) The effect of reduction in numbers of ommatidia upon the brain of Drosophila melanogaster. J Exp Zool 34: 33–71

    Article  Google Scholar 

  • Rangarajan R, Gong Q, Gaul U (1999) Migration and function of glia in the developing Drosophila eye. Development 126: 3285–3292

    PubMed  CAS  Google Scholar 

  • Rangarajan R, Courvoisier H, Gaul U (2001) Dpp and Hedgehog mediate neuron-glia interactions in Drosophila eye development by promoting the proliferation and motility of subretinal glia. Mech Dev 108: 93–103

    Article  PubMed  CAS  Google Scholar 

  • Rao Y, Zipursky SL (1998) Domain requirements for the Dock adapter protein in growth-cone signaling. Proc Natl Acad Sci USA 95: 2077–2082

    Article  PubMed  CAS  Google Scholar 

  • Rao Y, Pang P, Ruan W, Gunning D, Zipursky SL (2000) brakeless is required for photoreceptor growth-cone targeting in Drosophila. Proc Natl Acad Sci USA 97: 5966–5971

    Google Scholar 

  • Ready DF, Hanson TE, Benzer S (1976) Development of the Drosophila retina, a neurocrystalline lattice. Dev Biol 53: 217–240

    Article  PubMed  CAS  Google Scholar 

  • Schmucker D, Clemens JC, Shu H, Worby CA, Xiao J, Muda M, Dixon JE, Zipursky SL (2000) Drosophila Dscam is an axon guidance receptor exhibiting extraordinary molecular diversity. Cell 101: 671–684

    Google Scholar 

  • Scully AL, McKeown M, Thomas JB (1999) Isolation and characterization of Dek, a Drosophila eph receptor protein tyrosine kinase. Mol Cell Neurosci 13: 337–347

    Article  PubMed  CAS  Google Scholar 

  • Selleck SB, Steller H (1991) The influence of retinal innervation on neurogenesis in the first optic ganglion of Drosophila. Neuron 6: 83–99

    Article  PubMed  CAS  Google Scholar 

  • Selleck SB, Gonzalez C, Glover DM, White K (1992) Regulation of the G1-S transition in postembryonic neuronal precursors by axon ingrowth. Nature 355: 253–255

    Article  PubMed  CAS  Google Scholar 

  • Senti K, Keleman K, Eisenhaber F, Dickson BJ (2000) brakeless is required for lamina targeting of R1–R6 axons in the Drosophila visual system. Development 127: 2291–2301

    Google Scholar 

  • Servant G, Weiner OD, Herzmark P, Balla T, Sedat JW, Bourne HR (2000) Polarization of chemoattractant receptor signaling during neutrophil chemotaxis Science 287: 1037–1040

    CAS  Google Scholar 

  • Stowers RS, Schwarz TL (1999) A genetic method for generating Drosophila eyes composed exclusively of mitotic clones of a single genotype. Genetics 152: 1631–1639

    PubMed  CAS  Google Scholar 

  • White K, Kankel DR (1978) Patterns of cell division and cell movement in the formation of the imaginal nervous system in Drosophila melanogaster. Dev Biol 65: 296–321

    Article  PubMed  CAS  Google Scholar 

  • Winberg ML, Perez SE, Steller H (1992) Generation and early differentiation of glial cells in the first optic ganglion of Drosophila melanogaster. Development 115: 903–911

    PubMed  CAS  Google Scholar 

  • Wolff T, Martin KA, Rubin GM, Zipursky SL (1997) The development of the Drosophila visual system. In: Cowan WM, Jessell TM, Zipursky SL (eds) Molecular and cellular approaches to neural development. Oxford University Press, Oxford, pp 474–508

    Google Scholar 

  • Zhao ZS, Manser E, Chen XQ, Chong C, Leung T, Lim L (1998) A conserved negative regulatory region in alphaPAK: inhibition of PAK kinases reveals their morphological roles downstream of Cdc42 and Rac1. Mol Cell Biol 18: 2153–2163

    PubMed  CAS  Google Scholar 

  • Xu T, Rubin GM (1993) Analysis of genetic mosaics in developing and adult Drosophila tissues. Development 117: 1223–1237

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gaul, U. (2002). The Establishment of Retinal Connectivity. In: Moses, K. (eds) Drosophila Eye Development. Results and Problems in Cell Differentiation, vol 37. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45398-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45398-7_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53640-3

  • Online ISBN: 978-3-540-45398-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics