Skip to main content

Developmental Regulation Through Protein Stability

  • Chapter
Drosophila Eye Development

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 37))

  • 261 Accesses

Abstract

The idea that differential gene expression is critical to the establishment of different cell identities is well-worn into the psyches of all scientists who think about the cellular dynamics of development. Equally commonplace is the idea that temporally and spatially dynamic gene expression is quite often regulated at the level of transcription initiation. More exotic forms of regulation are also well-known, including mRNA splicing, mRNA and protein localization, protein-protein interactions and protein modification. Most recently, it has become apparent that specific alteration of protein stability is a widely used mechanism for controlling the dynamics of important cellular regulators. For example, the levels of cyclins and transcription factors are controlled by specifically targeted protein degradation via the ubiquitin/proteasome pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baker NE, Yu S, Han D (1996) Evolution of proneural atonal expression during distinct regulatory phases in the developing Drosophila eye. Curr Biol 6: 1290–1301

    Article  PubMed  CAS  Google Scholar 

  • Bejsovec A, Wieschaus E (1995) Signaling activities of the Drosophila wingless gene are separately mutable and appear to be transduced at the cell surface. Genetics 139: 309–320

    PubMed  CAS  Google Scholar 

  • Bohmann D, Ellis MC, Staszewski LM, Mlodzik M (1994) Drosophila Jun mediates Ras-dependent

    Google Scholar 

  • photoreceptor determination. Cell 78:973–986

    Google Scholar 

  • Bowtell DDL, Kimmel B, Simon MA, Rubin GM (1989) Regulation of the complex pattern of sevenless expression in the developing Drosophila eye. Proc Natl Acad Sci USA 86: 6245–6249

    Google Scholar 

  • Cadavid ALM, Ginzel A, Fischer JA (2000) The function of the Drosophila Fat facets deubiquitinating enzyme in limiting photoreceptor cell number is intimately associated with endocytosis. Development 127: 1727–1736

    PubMed  CAS  Google Scholar 

  • Carthew RW, Rubin GM (1990) seven in absentia, a gene required for specification of R7 cell fate in the Drosophila eye. Cell 63: 561–577

    Google Scholar 

  • Chang HC, Solomon NM, Wassarman DA, Karim FD, Therrien, Rubin GM, Wolff T (1995) phyllopod functions in the fate determination of a subset of photoreceptors in Drosophila. Cell 80: 463–472

    Google Scholar 

  • Chen H, Fre S, Slepnev VI, Capua MR, Takei K, Butler MH, Di Fiore PP, De Camilli P (1998) Epsin is an EH-domain-binding protein implicated in clathrin-mediated endocytosis. Nature 394: 793–797

    Article  PubMed  CAS  Google Scholar 

  • Chen ZJ, Parent L, Maniatis T (1996) Site-specific phosphorylation of IkappaBalpha by a novel ubiquitination-dependent protein kinase activity. Cell 84: 853–862

    Google Scholar 

  • Deshaies RJ (1999) SCF and Cullin/Ring H2-based ubiquitin ligases. Annu Rev Cell Dev Biol 15: 435–467

    Article  PubMed  CAS  Google Scholar 

  • Dickson BJ, Dominguez M, van der Straten A, Hafen E (1995) Control of Drosophila photoreceptor cell fates by Phyllopod, a novel nuclear protein acting downstream of the Raf kinase. Cell 80: 453–462

    Article  PubMed  CAS  Google Scholar 

  • Dokucu ME, Zipursky SL, Cagan RL (1996) Atonal, rough and the resolution of proneural dusters in the developing Drosophila retina. Development 122: 4139–4147

    PubMed  CAS  Google Scholar 

  • Dominguez M, Wassarman JD, Freeman M (1998) Multiple functions of the EGF receptor in Drosophila eye development. Curr Biol 8: 1039–1048

    Article  PubMed  CAS  Google Scholar 

  • Dong X, Tsuda L, Zavitz KH, Lin M, Li S, Carthew RW, Zipursky SL (1999) ebi regulates epidermal growth factor receptor signaling pathways in Drosophila. Genes Dev 13: 954–965

    Google Scholar 

  • Ellis MC, O’Neill EM, Rubin GM (1993) Expression of Drosophila Glass protein and evidence for negative regulation of its activity in non-neuronal cells by another DNA-binding protein.

    Google Scholar 

  • Development 119:855–865

    Google Scholar 

  • Fischer JA, Leavell SK, Li Q (1997) Mutagenesis screens for interacting genes reveal three roles for fat facets during Drosophila eye development. Dev Gen 21: 167–174

    Article  CAS  Google Scholar 

  • Fischer-Vize JA, Rubin GM, Lehmann R (1992) The fat facets gene is required for Drosophila eye and embryo development. Development 116: 985–1000

    PubMed  CAS  Google Scholar 

  • Flybase (1999) The Flybase database of the Drosophila genome projects and community literature. Available from http://flybase.bio.indiana.edu/. Nucleic Acids Res 27:85–88

    Google Scholar 

  • Harrison SD, Travers AA (1990) The tramtrack gene encodes a Drosophila finger protein that interacts with ftz transcriptional regulatory region and shows a novel embryonic expression pattern. EMBO J 9: 207–216

    PubMed  CAS  Google Scholar 

  • Hershko A (1998) The ubiquitin system. In: Peters J-M, Harris JR, Finley D (eds) Ubiquitin and the biology of the cell. Plenum Press, New York, pp 1–17

    Google Scholar 

  • Hicke L (1999) Gettin’ down with ubiquitin: turning off cell-surface receptors, transporters and channels. Trends Cell Biol 9: 107–111

    Article  PubMed  CAS  Google Scholar 

  • Huang Y, Fischer-Vize JA (1996) Undifferentiated cells in the developing Drosophila eye influence facet assembly and require the Fat facets deubiquitinating enzyme. Development 122: 3207–3216

    PubMed  CAS  Google Scholar 

  • Huang Y, Baker RT, Fischer-Vize JA (1995) Control of cell fate by a deubiquitinating enzyme encoded by the fat facets gene. Science 270: 1828–1831

    Article  PubMed  CAS  Google Scholar 

  • Isaksson A, Peverali FA, Kockel L, Mlodzik M, Bohmann D (1997) The deubiquitination enzyme Fat facets negatively regulates RTK/Ras/MAPK signalling during Drosophila eye development. Mech Dev 68: 59–67

    Article  PubMed  CAS  Google Scholar 

  • Jiang J, Struhl G (1998) Regulation of the Hedgehog and Wingless signalling pathways by the F-box/WD40-repeat protein Slimb. Nature 391: 493–496

    Article  PubMed  CAS  Google Scholar 

  • Joaziero CAP, Weissman AM (2000) Ring finger proteins: mediators of ubiquitin ligase activity. Cell 102: 549–552

    Article  Google Scholar 

  • Kauffmann RC, Li S, Gallagher PA, Zhang J, Carthew RW (1996) Rasl signaling and transcriptional competence in the R7 cell of Drosophila. Genes Dev 10: 2167–2178

    Article  PubMed  CAS  Google Scholar 

  • Kockel L, Zeitlinger J, Staszewski LM, Mlodzik M, Bohmann D (1997) Jun in Drosophila development: redundant and nonredundant functions and regulation by two MAPK signal transduction pathways. Genes Dev 11: 1748–1758

    Article  PubMed  CAS  Google Scholar 

  • Kumar JP, Tio M, Hsiung F, Akopyan S, Gabay L, Seger R, Shilo B-Z, Moses K (1998) Dissecting the roles of the Drosophila EGF receptor in eye development and MAP kinase activation. Development 125: 3875–3885

    PubMed  CAS  Google Scholar 

  • Lai Z-C, Rubin GM (1992) Negative control of photoreceptor development in Drosophila by the product of the yan gene, an ETS domain protein. Cell 70: 609–620

    Article  PubMed  CAS  Google Scholar 

  • Lai Z-C, Harrison SD, Karim F, Li Y, Rubin GM (1996) Loss of tramtrack gene activity results in

    Google Scholar 

  • ectopic R7 cell formation, even in a sina background. Proc Natl Acad Sci USA 93:5025–5030 Lai Z-C, Li Y (1999) Tramtrack69 is positively and autonomously required for Drosophila pho-

    Google Scholar 

  • toreceptor development. Genetics 152:299–305

    Google Scholar 

  • Lee HS, Simon JA, Lis JT (1988) Structure and expression of ubiquitin genes of Drosophila melanogaster. Mol Cell Biol 11: 4727–2735

    Google Scholar 

  • Li Q, Hariharan IK, Chen F, Huang Y, Fischer JA (1997) Genetic interactions with Rapl and Rasi reveal a second function for the fat facets gene in Drosophila eye development. Proc Natl Acad Sci USA 94: 12515–12520

    Article  PubMed  CAS  Google Scholar 

  • Li S, Li Y, Carthew RW, Lai Z-C (1997) Photoreceptor cell differentiation requires regulated proteolysis of the transcriptional repressor Tramtrack. Cell 90: 469–478

    Article  PubMed  CAS  Google Scholar 

  • Lieber T, Kidd S, Alcamo E, Corbin V, Young MW (1993) Antineurogenic phenotypes induced by truncated Notch proteins indicate a role in signal transduction and may point to a novel function for Notch in nuclei. Genes Dev 7: 1949–1965

    Article  PubMed  CAS  Google Scholar 

  • Lupas A, Baumeister W (1998) The ubiquitin system. In: Peters J-M, Harris JR, Finley D (eds) Ubiquitin and the biology of the cell. Plenum Press, New York, pp 127–146

    Google Scholar 

  • Maniatis T (1999) A ubiquitin ligase complex essential for the NF-kB, Wnt/Wingless, and Hedgehog signaling pathways. Genes Dev 13: 505–510

    Article  PubMed  CAS  Google Scholar 

  • Marsh M, McMahon HT (1999) The structural era of endocytosis. Science 285: 215–220

    Article  PubMed  CAS  Google Scholar 

  • Martin KA, Poeck B, Roth H, Ebens A], Ballard LC, Zipursky LS (1995) Mutations disrupting neuronal connectivity in the Drosophila nervous system. Neuron 14: 229–240

    Google Scholar 

  • Mayer BJ (1999) Endocytosis: EH domains lend a hand. Curr Biol 9: R70 - R73

    Article  PubMed  CAS  Google Scholar 

  • Miletich I, Limbourg-Bouchon B (2000) Drosophila null slimb clones transiently deregulate Hedgehog-independent transcription of wingless in all limb discs, and induce decapentaplegic transcription linked to imaginal disc regeneration. Mech Dev 93: 15–26

    Google Scholar 

  • Moses K, Rubin GM (1991) glass encodes a site-specific DNA-binding protein that is regulated in

    Google Scholar 

  • response to positional signals in the developing Drosophila eye. Genes Dev 5:583–593 Neufeld TP, Tang AH, Rubin GM (1998) A genetic screen to identify components of the sina sig-

    Google Scholar 

  • naling pathway in Drosophila eye development. Genetics 148:277–286

    Google Scholar 

  • O’Neill EM, Rebay I, Tjian R, Rubin GM (1994) The activities of two ETS-related transcription factors required for Drosophila eye development are modulated by the Ras/MAPK pathway. Cell 78: 137–147

    Article  PubMed  Google Scholar 

  • Parks AL, Klueg KM, Stout JR, Muskavitch MAT (2000) Ligand endocytosis drives receptor dissociation and activation in the Notch pathway. Development 127: 1373–1385

    PubMed  CAS  Google Scholar 

  • Pickart CM (1998) The ubiquitin system. In: Peters J-M, Harris JR, Finley D (eds) Ubiquitin and the biology of the cell. Plenum Press, New York, pp 19–63

    Google Scholar 

  • Rebay I, Rubin GM (1995) Yan functions as a general inhibitor of differentiation and is negatively regulated by activation of the Ras/MAPK pathway. Cell 81: 857–866

    Article  PubMed  CAS  Google Scholar 

  • Read D, Manley JL (1992) Alternatively spliced transcripts of the Drosophila tramtrack gene encode zinc finger proteins with distinct DNA binding specificities. EMBO J 11: 1035–1044

    Google Scholar 

  • Rebay I, Fehon RG, Artavanis-Tsakonas S (1993) Specific truncation of Drosophila Notch define

    Google Scholar 

  • dominant activated and dominant negative forms of the receptor. Cell 74:319–329 Rechsteiner M (1998) The ubiquitin system. In: Peters J-M, Harris JR, Finley D (eds) Ubiquitin and the biology of the cell. Plenum Press, New York, pp 147–189

    Google Scholar 

  • Rogge R, Green PJ, Urano J, Horn-Saban S, Mlodzik M, Shil B-Z, Hartenstein V, Banerjee U (1995) The role of yan in mediating the choice between cell division and differentiation. Development 121: 3947–3958

    PubMed  CAS  Google Scholar 

  • Rubin GM, Yandell MD, Wortman JR, Miklos GLG, Nelson CR et al. (2000) Comparative genomics of the eukaryotes. Science 287: 2204–2215

    Article  PubMed  CAS  Google Scholar 

  • Saville KJ, Belote JM (1993) Identification of an essential gene, l(3)73Ai, with a dominant temperature-sensitive lethal allele, encoding a Drosophila proteasome subunit. Proc Natl Acad Sci USA 90: 8842–8846

    Article  PubMed  CAS  Google Scholar 

  • Scheffner M, Smith S, Jentsch S (1998) The ubiquitin system. In: Peters J-M, Harris JR, Finley D (eds) Ubiquitin and the biology of the cell. Plenum Press, New York, pp 65–91

    Google Scholar 

  • Seugnet L, Simpson P, Haenlin M (1997) Requirement for dynamin during Notch signaling in Drosophila neurogenesis. Dev Biol 192: 585–598

    Article  PubMed  CAS  Google Scholar 

  • Strous GJ, Govers R (1999) The ubiquitin-proteasome system and endocytosis. J Cell Sci 112: 1417–1423

    PubMed  CAS  Google Scholar 

  • Tang AH, Neufeld TP, Kwan E, Rubin GM (1997) Phyl acts to down-regulate Ttk88, a transcrip- tional repressor of neuronal cell fates, by a Sina-dependent mechanism. Cell 90: 459–467

    Article  PubMed  CAS  Google Scholar 

  • Tei H, Nihonmatsu I, Yokokura T, Ueda R, Sano Y, Okuda T, Sato K, Hirata K, Fujita SC, Yamamoto D (1992) pokkuri, a Drosophila gene encoding an E-26-specific (ETS) domain protein, prevents overproduction of the R7 photoreceptor. Proc Natl Acad Sci USA 89: 6856–6860

    Google Scholar 

  • Theodosiou NA, Zhang S, Wang W-Y, Xu T (1998) slimb coordinates wg and dpp expression in the dorsal-ventral and anterio-posterior axes during limb development. Development 125: 3411–3416

    Google Scholar 

  • Treier M, Seufert W, Jentsch S (1992) Drosophila UbcD1 encodes a highly conserved ubiquitin-conjugating enzyme involved in selective protein degradation. EMBO J 11: 367–372

    Google Scholar 

  • Treier M, Staszewski LM, Bohmann D (1994) Ubiquitin-dependent c-Jun degradation in vivo is

    Google Scholar 

  • mediated by the S domain. Cell 78:787–798

    Google Scholar 

  • Treier M, Bohmann D, Mlodzik M (1995) JUN cooperates with ETS domain protein Pointed to induce photoreceptor R7 fate in the Drosophila eye. Cell 83: 753–760

    Article  PubMed  CAS  Google Scholar 

  • Viera AV, Lamaze A, Schmid SL (1996) Control of EGF receptor signaling by clathrin-mediated endocytosis. Science 274: 2086–2089

    Article  Google Scholar 

  • Wehrli M, Tomlinson A (1998) Independent regulation of anterior/posterior and equatorial/ polar polarity in the Drosophila eye; evidence for the involvement of Wnt signaling in the equatorial/polar axis. Development 125: 1421–1432

    PubMed  CAS  Google Scholar 

  • Wells A, Welsh JB, Lazar CS, Wiley HS, Gill GN, Rosenfeld MG (1990) Ligand-induced trans- formation by a noninternalizing epidermal growth factor receptor. Science 247: 962–964

    Article  PubMed  CAS  Google Scholar 

  • Wendland B, Steece KE, Emr SD (1999) Yeast epsins contain an essential N-terminal ENTH domain, bind clathrin and are required for endocytosis. EMBO J 18: 4383–4393

    Article  PubMed  CAS  Google Scholar 

  • Wilde A, Beattie EC, Lem L, Riethof DA, Liu SH, Mobley WB, Soriano P, Brodsky FM (1999) EGF receptor signaling stimulates SRC kinase phosphorylation of clathrin, influencing clathrin redistribution and EGF uptake. Cell 96: 677–687

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson KD, Hochstrasser M (1998) The deubiquitinating enzymes. The ubiquitin system. In: Peters J-M, Harris JR, Finley D (eds) Ubiquitin and the biology of the cell. Plenum Press, New York, pp 99–125

    Google Scholar 

  • Wu Z, Li Q. Fortini M, Fischer JA (1999) Genetic analysis of the role of the Drosophila fat facets gene in the ubiquitin pathway. Dev Gen 25: 312–320

    Article  CAS  Google Scholar 

  • Xiong W-C, Montell C (1993) tramtrack is a transcriptional repressor required for cell fate determination in the Drosophila eye. Genes Dev 7: 1085–1096

    Google Scholar 

  • Xu C, Kauffman RC, Zhang J, Kaladny S, Carthew RC (2000) Overlapping activators and repressors delimit transcriptional response to receptor tyrosine kinase signals in the Drosophila eye. Cell 103: 87–97

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fischer, J.A. (2002). Developmental Regulation Through Protein Stability. In: Moses, K. (eds) Drosophila Eye Development. Results and Problems in Cell Differentiation, vol 37. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45398-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45398-7_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53640-3

  • Online ISBN: 978-3-540-45398-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics