Advertisement

Managing Unstructured E-Commerce Information

  • Rui Gureghian Scarinci
  • Leandro Krug Wives
  • Stanley Loh
  • Christian Zabenedetti
  • José Palazzo Moreira de Oliveira
Conference paper
  • 424 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2784)

Abstract

This paper describes an e-commerce application build on the Electronic Trading Opportunities System. This system enables ‘Trade Points’ and trade related bodies to exchange information by e-mail. This environment offers an enormous trade potential and opportunities to small and medium enterprises, but its efficiency is limited since the amount of circulating messages surpasses the human limit to analyze them. The application described here aids this process of analysis, allowing the extraction of the most relevant characteristics from the messages. The application is structured in three phases. The first is responsible for analyzing and for providing structural information about texts. The second identifies relevant information on texts through clustering and categorization processes. The third applies Information Extraction techniques, which are aided by the use of a domain specific knowledge base, to transform the unstructured information into a structured one. By the end, the user gets more quality in the analysis and can more easily find interesting ideas, trends and details, creating new trade opportunities to small and medium enterprises.

Keywords

Extraction Process Information Extraction Mobile Telephony Medium Enterprise Stop Word 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    UNTPDC. Electronic Trading Opportunities (ETO) System, United Nations Trade Point Development Center, UNTPDC (Last Access Date: September 2002), http://www.wtpfed.org
  2. 2.
    Han, J., Fu, Y.: Discovery of Multiple-Level Association Rules from Large Databases. In: Proc. of 1995 Int’l Conf. on Very Large Data Bases (VLDB1995), Zürich, Switzerland, September 1995, pp. 420–431 (1995)Google Scholar
  3. 3.
    Hobbs, J.R.: Generic Information Extraction System. Artificial Intelligence Center SRI International (2002), http://www.itl.nist.gov/iaui/894.02/related_projects/tipster/gen_ie.htm, (Last Access Date: September 2002)
  4. 4.
    Zaïane, O.R.: From Resource Discovery to Knowledge Discovery on the Internet, Technical Report TR 1998-13, Simon Fraser University (August 1998) Google Scholar
  5. 5.
    Hardy, D.R., Schwartz, M.F.: ESSENCE: A Resource Discovery System Based on Semantic File Indexing. In: USENIX WINTER CONVERENCE, San Diego, California, Boulder, University of Colorado, pp. 361–374 (1993)Google Scholar
  6. 6.
    Loh, S., Wives, L.K., Oliveira, J.P.M.: Concept-based knowledge discovery in texts extracted from the WEB. ACM SIGKDD Explorations 2(1), 29–39 (2000)CrossRefGoogle Scholar
  7. 7.
    Porter, M.F.: An algorithm for suffix stripping. Program 14(3), 130–137 (1980); Reprinted in Karen, S.J., Willet, P.: Readings in Information Retrieval. Morgan Kaufmann, San Francisco (1997) ISBN 1-55860-454-4Google Scholar
  8. 8.
    Rocchio, J.J.: Document Retrieval Systems: Optimization and Evaluation, Ph.D. thesis, National Science Foundation, Harvard Computation Laboratory (1966) Google Scholar
  9. 9.
    Cohen, W.W., Singer, Y.: Context-Sensitive Learning Methods for Text Categorization. ACM TOIS 17(2), 141–173 (1999)CrossRefGoogle Scholar
  10. 10.
    Ragas, H., Koster, C.: Four Text Classification Algorithms Compared on a Dutch Corpus. In: ACM-SIGIR 1998, pp. 369–370. ACM Press, New York (1998)Google Scholar
  11. 11.
    Apté, C., Damerau, F., Weiss, S.M.: Automated learning of decision rules for text categorization. ACM Transactions on Information Systems 12(3), 233–251 (1994)CrossRefGoogle Scholar
  12. 12.
    Lehnert, W.: Crystal: Learning Domain-specific Text Analysis Rules. CIIR Technical Report Computer (1996), http://www-nlp.cs.umass.edu/ciir-pubs/te-43.pdf (Last Access Date: september 2002)
  13. 13.
    Grishman, R.: Information Extraction: Techniques and Challenges - Information Extraction - A Multidisciplinary Approach to an Emerging Information Technology. In: Pazienza., M.T. (ed.). LNCS (LNAI), pp. 10–27. Springer, Heidelberg (1997)Google Scholar
  14. 14.
    Constantino, M., Morgan, R.G., Collingham, R.J.: Financial Information Extraction Using Pre-defined and User-definable Templates in the LOLITA. CIT - Journal of Computing and Information Technology 4(4), 241–255 (1996)Google Scholar
  15. 15.
    Moulin, B., Rousseau, D.: Automated knowledge acquisition from regulatory texts. IEEE Expert 7(5), 27–35 (1992)CrossRefGoogle Scholar
  16. 16.
    Cowie, J., Lehnert, W.: Information Extraction. Communications of the ACM 39(1), 80–91 (1996)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Rui Gureghian Scarinci
    • 1
  • Leandro Krug Wives
    • 1
  • Stanley Loh
    • 2
    • 3
  • Christian Zabenedetti
    • 1
  • José Palazzo Moreira de Oliveira
    • 1
  1. 1.Instituto de InformáticaPPGC/UFRGSPorto AlegreBrasil
  2. 2.Universidade Luterana do Brasil (ULBRA)CanoasBrasil
  3. 3.Universidade Católica de Pelotas (UCPEL)PelotasBrasil

Personalised recommendations