Advertisement

Detection of Redundant Arcs in Entity Relationship Conceptual Models

  • David S. Bowers
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2784)

Abstract

One measure of the quality of a conceptual model is the quality of design that can be derived from it. Redundant relationships in an Entity Relationship model cause a generated relational schema to be un-normalised. Since a relationship is redundant only if some other path in the model implies both its set theoretic signature and its semantics, determination of redundancy is not mechanical, and always requires interaction with the client or user. A path composition and search algorithm is presented to detect potentially redundant relationships, and strategies are discussed for the incorporation of this type of algorithm in a CASE environment.

Keywords

Relational Schema Contract Employee Cardinality Constraint Partial Path Entity Relationship 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Teorey, T.J., Yang, D., Fry, J.P.: A logical design methodology for relational databases using the extended entity-relationship model. ACM Computing Surveys 18(2), 197–222 (1986)zbMATHCrossRefGoogle Scholar
  2. 2.
    Bowers, D.S.: From Data to Database, pp. 164–179. Van Nostrand Reinhold, London (1987)Google Scholar
  3. 3.
    Dullea, J., Song, I.-Y.: An Analysis of Cardinality Constraints in Redundant Relationships. In: Proc. CIKM 1997, pp. 270–277 (1997)Google Scholar
  4. 4.
    Rosenthal, A., Reiner, D.: Tools and Transformations - Rigorous and Otherwise – for Practical Database Design. ACM Transactions on Database Systems 19(2), 167–211 (1994)CrossRefGoogle Scholar
  5. 5.
    Lenzerini, M., Nobili, P.: On the Satisfiability of Dependency Constraints in Entity- Relationship Schemata. In: Proc. 13th International Conference on Very Large Databases, Brighton, pp. 147–154. Morgan Kaufmann, San Francisco (1987)Google Scholar
  6. 6.
    Hartmann, S.: On the Consistency of Int-cardinality Constraints. In: Ling, T.-W., Ram, S., Li Lee, M. (eds.) ER 1998. LNCS, vol. 1507, pp. 150–163. Springer, Heidelberg (1998)Google Scholar
  7. 7.
    Shanks, G., Darke, P.: Understanding corporate data models. Information & Management 35, 19–30 (1999)CrossRefGoogle Scholar
  8. 8.
    Batra, D., Antony, S.R.: Novice errors in conceptual database design. European Journal of Information Systems 3(1), 57–69 (1994)CrossRefGoogle Scholar
  9. 9.
    Atkins, C., Patrick, J.: NaLER: A natural language method for interpreting E-R models. In: Proc. International Conference Software Engineering: Education and Practice, pp. 2–9 (1998)Google Scholar
  10. 10.
    Hay, D.C.: Making data models readable. Information Systems Management 15(1), 21–33 (1998)CrossRefGoogle Scholar
  11. 11.
    Kesh, S.: Evaluating the quality of entity relationship models. Information & Software Technology 37(12), 681–689 (1995)CrossRefGoogle Scholar
  12. 12.
    Moody, D.L.: Metrics for evaluating the quality of entity relationship models. In: Ling, T.-W., Ram, S., Li Lee, M. (eds.) ER 1998. LNCS, vol. 1507, pp. 211–225. Springer, Heidelberg (1998)Google Scholar
  13. 13.
    Moody, D.L., Shanks, G.G., Darke, P.: Improving the quality of entity-relationship models – experience in research and practice. In: Ling, T.-W., Ram, S., Li Lee, M. (eds.) ER 1998. LNCS, vol. 1507, pp. 255–276. Springer, Heidelberg (1998)Google Scholar
  14. 14.
    Morris, A.: The Key, the Whole Key, and Nothing But.. Application Development Adviser 2(4), 64–67 (1999)Google Scholar
  15. 15.
    Agrawal, W.D., Bushnell, M.L., Lim, P.: Redundancy Identification Using Transitive Closure. In: Proc. ATS 1996, 5th Asia Test Symposium, pp. 4–9 (1996)Google Scholar
  16. 16.
    Chang, S.-C., Cheng, D.I., Yeh, C.-W.: Removing multiple redundancies in combinational circuits. IEE Proc. Comput. Digit. Tech. 149(1), 1–8 (2002)CrossRefGoogle Scholar
  17. 17.
    Schmolze, J.G., Snyder, W.: Detecting redundancy among production rules using term rewrite semantics. Knowledge Based Systems 12, 3–11 (1999)CrossRefGoogle Scholar
  18. 18.
    Dar, S., Ramakrishnan, R.: A Performance Study of Transitive Closure Algorithms. In: Proc. ACM - SIGMOD 1994, pp. 454–465 (1994)Google Scholar
  19. 19.
    Agrawal, R., Borgida, A., Jogadish, H.V.: Efficient Management of Transitive Relationships in Large Data and Knowledge Bases. In: ACM - SIGMOD 1989, pp. 253–262 (1989)Google Scholar
  20. 20.
    Sridhar, R., Iyengar, S.S.: Efficient parallel Algorithms for Functional Dependency Manipulations. In: Proc. 2nd International Symposium on Databases in Parallel and Distributed Systems, Dulbin, pp. 126 - 137 (1990)Google Scholar
  21. 21.
    Ausiello, G., D’Atri, A., Sacca, D.: Graph Algorithms for Functional Dependency Manipulation. Journal of the ACM 30(4), 752–766 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Bowers, D.: Database Schema Improvement Techniques for CASE Tools. In: proc. UKAIS 2000, pp. 266–275 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • David S. Bowers
    • 1
  1. 1.Computing DepartmentThe Open UniversityMilton KeynesUK

Personalised recommendations