Skip to main content

Quantum Theory for Near-Field Nano-Optics

  • Chapter
Nano-Optics

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 84))

  • 580 Accesses

Abstract

Near-field optics and related techniques are based on the electromagnetic interactions of matter in the quasi-static regime, where the electromagnetic fields in a mode coupled with matter play the fundamental role. Here, the quasi-static regime implies that the dominant electromagnetic interactions between matter take place across a distance much smaller than the optical wavelength. Recent developments in microfabrication provide a diversity of probe tips with the potential to pick the local fields out of the sea of macroscopic electromagnetic interactions [1]. In the near-field regime, the optical properties of matter and associated near-fields depend strongly on the sizes and shapes of the matter involved. In fact, the optical response of matter is determined by internal electronic processes including the interaction with optical fields consistent with both electronic and electromagnetic boundary conditions. The resulting scattered fields reflect the properties of these internal processes in the illuminated objects, especially when they are observed in an optical near-field. The scattered fields exhibit asymptotic behavior in the far-field limit as propagating optical waves of a retarded nature that carry electromagnetic energy out of the object [2]. In this case, the optical response of matter can be represented in macroscopic quantities, such as dielectric functions, which enable us to reproduce the macroscopic electromagnetic boundary conditions correctly [3]. In contrast, when an observation is carried out in a subwavelength vicinity of objects, the scattered field involves strong near-fields showing steep decay, which reveal the details of optical interactions taking place inside the objects. Theoretical descriptions of optical near-field processes should therefore be based on detailed studies of the electromagnetic interaction of matter at the microscopic level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Ohtsu and H. Hori: Near-Field Nano-Optics ( Kluwer Academic/Plenum. New York 1999 )

    Book  Google Scholar 

  2. J.D. Jackson: Classical Electrodynamics, 2nd ed. (John Wiley Sz Sons, New York 1975 )

    Google Scholar 

  3. M. Born and E. Wolf: Principles of Optics, 3rd ed. ( Pergamon Press, Oxford 1965 )

    Google Scholar 

  4. K. Cho: Prog. Theor. Phys. Suppl. 106, 225 (1991)

    Article  ADS  Google Scholar 

  5. J.L. Birman: Excitons, E.I. Rashba and M.D. Sturge, eds. (North Holland. Amsterdam 1982 ) p.72; P. Halevi, Spatial Dispersion in Solids and Plasmas, P. Halevi, ed. ( Elsevier, 1992 )

    Google Scholar 

  6. K. Cho and J. Ushida: Elementary Processes in Excitations and Reactions on Solid Surfaces, Springer Series in Solid State Sciences 121, 193 (1996)

    Article  Google Scholar 

  7. K. Cho: J. Phys. Soc. Jpn. 66, 2496 (1997)

    Article  ADS  Google Scholar 

  8. H. Ishihara and K. Cho: Phys. Rev. B 42, 1724 (1990); B48, 7960 (1993); B53, 15823 (1996)

    Google Scholar 

  9. K. Cho: J. Luminescence 87–89, (2000) 7; Mol. Cryst. Liq. Cryst. 314, 179 (1998)

    Google Scholar 

  10. e.g., Haken: Laser Theory ( Springer, 1984 ) Sec. V

    Google Scholar 

  11. K. Cho: J. Phys. Soc. Jpn. 68, 683 (1999)

    Article  ADS  Google Scholar 

  12. W. C. Chew: Waves and Fields in Inhomogeneous Media ( IEEE Press, New York 1995 )

    Google Scholar 

  13. A.A. Maradudin and D.L. Mills: Phys. Rev. 11, 1392 (1974)

    Google Scholar 

  14. K. Cho, Y. Ohfuti, and K. Arima: Jpn. J. Appl. Phys. Suppl. 34, 267 (1994)

    Google Scholar 

  15. J. Ushida and K. Cho: J. Luminescence 66 and 67, 94 (1996); J. Ushida: PhD Thesis (Osaka Univ., 1999 )

    Google Scholar 

  16. O. Keller, M. Xiao, and S. Vozhevolnyi: Surf. Sci. 20, 217 (1993)

    Article  Google Scholar 

  17. K. Cho, Y. Ohfuti, and K. Arima: Surf. Sci. 363, 378 (1996)

    Article  ADS  Google Scholar 

  18. S. Haroche and D. Kleppner: Phys. Today 1, 24 (1989)

    Article  Google Scholar 

  19. J. Ushida, T. Ohta, and K. Cho: J. Phys. Soc. Jpn. 68, 2439 (1999)

    Article  ADS  Google Scholar 

  20. T. Inoue and H. Hori: Opt. Rev. 3, 458 (1996)

    Article  Google Scholar 

  21. E. Wolf and M. Niet-Vesperinas: J. Opt. Soc. Am. 2, 886 (1985)

    Article  ADS  Google Scholar 

  22. T. Inoue and H. Hori: Phys. Rev. A 63, 063805–1–16 (2001)

    Google Scholar 

  23. T. Inoue, I. Banno, and H. Hori: Opt. Rev. 5, 295 (1998)

    Article  Google Scholar 

  24. P. Berman, ed.: Cavity Quantum Electrodynamics ( Academic Press, San Diego 1994 )

    Google Scholar 

  25. C.K. Carniglia and L. Mandel: Phys. Rev. D 3, 280 (1971)

    Article  ADS  Google Scholar 

  26. J.M. Vigoureux and R. Payen: J. Phys. (Paris) 36, 1327 (1975)

    Article  Google Scholar 

  27. D.F. Nelson: Phys. Rev. A 44, 3985 (1991)

    Article  ADS  Google Scholar 

  28. T. Matsudo, T. Takahara, H. Hori, and T. Sakurai: Opt. Commun. 145, 64 (1998)

    Article  ADS  Google Scholar 

  29. W. Lukosz and R.E. Kunz: J. Opt. Soc. Am. 67, 1607; 1615 (1977)

    Article  ADS  Google Scholar 

  30. T. Matsudo, H. Hori, T. Inoue, H. Iwata, Y. Inoue, and T. Sakurai: Phys. Rev. A 55, 2406 (1997)

    Article  ADS  Google Scholar 

  31. G.S. Agarwal: Phys. Rev. A 11, 230; 243; 253 (1977)

    ADS  Google Scholar 

  32. C. Cohen-Tannoudji, B. Diu, and F. Laloë: Principles of Optics ( John Wiley and Sons, New York 1997 )

    Google Scholar 

  33. H. Hori, K. Kitahara, and M. Ohtsu: The 1st Asia Pacific Workshop on Near-Field Optics, Seoul, 1966, p. 49

    Google Scholar 

  34. H. Hori, K. Kitahara, I. Banno, and M. Ohtsu: (in press)

    Google Scholar 

  35. H. Hori, Y. Ohdaira, K. Kijima, Y. Nakamura, T. Sakurai, and K. Kitahara: Tech. Digest 5th Int. Conf. Near-Field Opt. and Related Techniques, Shirahama, 1988, pp. 266–267

    Google Scholar 

  36. I. Banno, H. Hori, and T. Inoue: Opt. Rev. 3, 454 (1996)

    Article  Google Scholar 

  37. L. Mandel: Phys. Rev. 144, 1071 (1966)

    Article  MathSciNet  ADS  Google Scholar 

  38. J.J. Hopfield: Phys. Rev. 3, 1555 (1958)

    Article  ADS  Google Scholar 

  39. H. Hori and M. Ohtsu: in Quantum Control and Measurement, H. Ezawa and Y. Murayama, eds. ( North-Holland, Amsterdam 1993 )

    Google Scholar 

  40. K. Kobayashi and M. Ohtsu: J. Microsc. 194, 249 (1999)

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cho, K., Hori, H., Kitahara, K. (2002). Quantum Theory for Near-Field Nano-Optics. In: Kawata, S., Ohtsu, M., Irie, M. (eds) Nano-Optics. Springer Series in Optical Sciences, vol 84. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45273-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45273-7_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07527-8

  • Online ISBN: 978-3-540-45273-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics