Advertisement

Incremental and Decremental Proximal Support Vector Classification using Decay Coefficients

  • Amund Tveit
  • Magnus Lie Hetland
  • Håavard Engum
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2737)

Abstract

This paper presents an efficient approach for supporting decremental learning for incremental proximal support vector machines (SVM). The presented decremental algorithm based on decay coefficients is compared with an existing window-based decremental algorithm, and is shown to perform at a similar level in accuracy, but providing significantly better computational performance.

Keywords

Support Vector Machine Concept Drift Support Vector Machine Method Operational Research Society Increment Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agarwal, D.K.: Shrinkage Estimator Generalizations of Proximal Support Vector Machines. In: Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 173–182. ACM Press, New York (2002)CrossRefGoogle Scholar
  2. 2.
    Ahmed, N., Liu, H., Sung, K.K.: Handling Concept Drifts in Incremental Learning with Support Vector Machines. In: Proceedings of the fifth International Conference on Knowledge Discovery and Data Mining, pp. 317–321. ACM Press, New York (1999)Google Scholar
  3. 3.
    Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.: LAPACK Users’ Guide, 3rd edn. Society for Industrial and Applied Mathematics, Philadelphia, PA (1999)Google Scholar
  4. 4.
    Ben-Hur, A., Horn, D., Siegelmann, H.T., Vapnik, V.: Support Vector Clustering. Journal of Machine Learning Research 2, 125–137 (2001)CrossRefGoogle Scholar
  5. 5.
    Burbidge, R., Buxton, B.F.: An introduction to support vector machines for data mining. In: Sheppee, M. (ed.) Keynote Papers, Young OR12, Operational Research Society, pp. 3–15, University of Nottingham (2001)Google Scholar
  6. 6.
    Cauwenberghs, G., Poggio, T.: Incremental and Decremental Support Vector Machine Learning. In: Advances in Neural Information Processing Systems (NIPS 2000), vol. 13, pp. 409–415. MIT Press, Cambridge (2001)Google Scholar
  7. 7.
    Christiani, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and other kernel-based learning methods, 1st edn., ch. 6, pp. 93–111. Cambridge University Press, Cambridge (2000)Google Scholar
  8. 8.
    Fung, G., Mangasarian, O.L.: Multicategory Proximal Support Vector Classifiers. Submitted to Machine Learning Journal (2001)Google Scholar
  9. 9.
    Fung, G., Mangasarian, O.L.: Proximal support vector machine classifiers. In: Proceedings of the 7th ACM Conference on Knowledge Discovery and Data Mining, pp. 77–86. ACM, New York (2001)Google Scholar
  10. 10.
    Fung, G., Mangasarian, O.L.: Incremental Support Vector Machine Classification. In: Grossman, R., Mannila, H., Motwani, R. (eds.) Proceedings of the Second SIAM International Conference on Data Mining, pp. 247–260. SIAM, Philadelphia (2002)Google Scholar
  11. 11.
    Hsu, C.-W., Lin, C.-J.: A Comparison ofMethods for Multi-class Support Vector Machines. IEEE Transactions on Neural Networks 13(2), 415–425 (2002)CrossRefGoogle Scholar
  12. 12.
    Huang, J., Shao, X., Wechsler, H.: Face pose discrimination using support vector machines (svm). In: Proceedings of 14th Int’l Conf. on Pattern Recognition (ICPR 1998), pp. 154–156. IEEE, Los Alamitos (1998)Google Scholar
  13. 13.
    Klinkenberg, R., Joachims, T.: Detecting Concept Drift with Support Vector Machines. In: Langley, P. (ed.) Proceedings of the Seventeenth International Conference on Machine Learning (ICML), Morgan Kaufmann, San Francisco (2000)Google Scholar
  14. 14.
    Lange, K.: Numerical Analysis for Statisticians, ch. 7.3, pp. 80–81. Springer, Heidelberg (1999)zbMATHGoogle Scholar
  15. 15.
    Simplified wrapper and interface generator. Online (March 2003), http://www.swig.org/
  16. 16.
    Tveit, A., Hetland, M.L.: Multicategory Incremental Proximal Support Vector Classifiers. In: Proceedings of the 7th International Conference on Knowledge-Based Information & Engineering Systems (forthcoming). LNCS (LNAI). Springer, Heidelberg (2003)Google Scholar
  17. 17.
    Tveit, A., Tveit, G.B.: Game Usage Mining: Information Gathering for Knowledge Discovery in Massive Multiplayer Games. In: Proceedings of the International Conference on Internet Computing (IC 2002), session on Web Mining. CSREA Press (2002)Google Scholar
  18. 18.
    Vapnik, V.N.: The Nature of Statistical Learning Theory, 2nd edn., ch. 5, pp. 138–146. Springer, Heidelberg (1999)Google Scholar
  19. 19.
    Whaley, R.C., Petitet, A., Dongarra, J.J.: Automated Empirical Optimization of Software and the ATLAS Project. Parallel Computing 27(1-2), 3–25 (2001)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Amund Tveit
    • 1
  • Magnus Lie Hetland
    • 1
  • Håavard Engum
    • 1
  1. 1.Department of Computer and Information ScienceNorwegian University of Science and TechnologyTrondheimNorway

Personalised recommendations