Using a Connectionist Approach for Enhancing Domain Ontologies: Self-Organizing Word Category Maps Revisited

  • Michael Dittenbach
  • Dieter Merkl
  • Helmut Berger
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2737)


In this paper, we present an approach based on neural networks for organizing words of a specific domain according to their semantic relations. The terms, which are extracted from domain-specific text documents, are mapped onto a two-dimensional map to provide an intuitive interface displaying semantically similar words in spatially similar regions. This representation of a domain vocabulary supports the construction and enrichment of domain ontologies by making relevant concepts and their relations evident.


Semantic Similarity Semantic Relation Domain Ontology Information Retrieval System Ontology Engineering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dittenbach, M., Merkl, D., Berger, H.: What customers really want from tourism information systems but never dared to ask. In: Proc. of the 5th Int’l Conference on Electronic Commerce Research (ICECR-5), Montreal, Canada (2002)Google Scholar
  2. 2.
    Dittenbach, M., Merkl, D., Berger, H.: A natural language query interface for tourism information. In: Frew, A.J., Hitz, M., O’Connor, P. (eds.) Proceedings of the 10th International Conference on Information Technologies in Tourism (ENTER 2003), Helsinki, Finland, pp. 152–162. Springer, Heidelberg (2003)Google Scholar
  3. 3.
    Frakes, W., Prieto-Díaz, R., Fox, C.: DARE: Domain analysis and reuse environment. Annals of Software Engineering 5, 125–141 (1998)CrossRefGoogle Scholar
  4. 4.
    Honkela, T.: Self-Organizing Maps in Natural Language Processing. PhD thesis, Helsinki University of Technology (1997)Google Scholar
  5. 5.
    Honkela, T., Pulkki, V., Kohonen, T.: Contextual relations of words in grimm tales, analyzed by self-organizing map. In: Fogelman-Soulie, F., Gallinari, P. (eds.) Proceedings of the International Conference on Artificial Neural Networks (ICANN 1995), Paris, France, pp. 3–7 (1995); EC2 et Cie Google Scholar
  6. 6.
    Kaski, S., Honkela, T., Lagus, K., Kohonen, T.: WEBSOM–self-organizing maps of document collections. In: Neurocomputing, November 1998, vol. 21, pp. 101–117. Elsevier, Amsterdam (1998)Google Scholar
  7. 7.
    Kohonen, T.: Self-organized formation of topologically correct feature maps. Biological Cybernetics 43 (1982)Google Scholar
  8. 8.
    Kohonen, T.: Self-organizing maps. Springer, Berlin (1995)Google Scholar
  9. 9.
    Kohonen, T., Kaski, S., Lagus, K., Salojärvi, J., Honkela, J., Paatero, V., Saarela, A.: Self organization of a massive document collection. IEEE Transactions on Neural Networks 11(3), 574–585 (2000)CrossRefGoogle Scholar
  10. 10.
    Manning, C., Schütze, H.: Foundations of statistical natural language processing. MIT Press, Cambridge (2000)Google Scholar
  11. 11.
    Prieto-Díaz, R.: A faceted approach to building ontologies. In: Spaccapietra, S., March, S.T., Kambayashi, Y. (eds.) ER 2002. LNCS. Springer, Heidelberg (2002)Google Scholar
  12. 12.
    Pröll, B., Retschitzegger, W., Wagner, R., Ebner, A.: Beyond traditional tourism information systems – TIScover. Information Technology and Tourism 1 (1998)Google Scholar
  13. 13.
    Ritter, H., Kohonen, T.: Self-organizing semantic maps. Biological Cybernetics 61(4), 241–254 (1989)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Michael Dittenbach
    • 1
  • Dieter Merkl
    • 1
    • 2
  • Helmut Berger
    • 1
  1. 1.E-Commerce Competence Center – EC3WienAustria
  2. 2.Institut für SoftwaretechnikTechnische Universität WienWienAustria

Personalised recommendations