Skip to main content

Cluster Validity Using Support Vector Machines

  • Conference paper
Data Warehousing and Knowledge Discovery (DaWaK 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2737))

Included in the following conference series:

Abstract

Gaining confidence that a clustering algorithm has produced meaningful results and not an accident of its usually heuristic optimization is central to data analysis. This is the issue of validity and we propose here a method by which Support Vector Machines are used to evaluate the separation in the clustering results. However, we not only obtain a method to compare clustering results from different algorithms or different runs of the same algorithm, but we can also filter noise and outliers. Thus, for a fixed data set we can identify what is the most robust and potentially meaningful clustering result. A set of experiments illustrates the steps of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bennett, K.P., Campbell, C.: Support vector machines: Hype or hallelujah. SIGKDD Explorations 2(2), 1–13 (2000)

    Article  Google Scholar 

  2. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum, New York (1981)

    MATH  Google Scholar 

  3. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines (2001), http://www.csie.ntu.edu.tw/~cjlin/libsvm

  4. Chang, C.C., Lin, C.J.: Training v-support vector classifiers: Theory and algorithms. Neural Computation 13(9), 2119–2147 (2001)

    Article  MATH  Google Scholar 

  5. Cherkassky, V., Muller, F.: Learning from Data — Concept, Theory and Methods. Wiley, New York (1998)

    Google Scholar 

  6. Dubes, R.C.: Cluster analysis and related issues. In: Chen, C.H., Pau, L.F., Wang, P.S.P. (eds.) Handbook of Pattern Recognition and Computer Vision, ch. 1.1, pp. 3–32. World Scientific, Singapore (1993)

    Google Scholar 

  7. Estivill-Castro, V.: Why so many clustering algorithms - a position paper. SIGKDD Explorations 4(1), 65–75 (2002)

    Article  MathSciNet  Google Scholar 

  8. Gokcay, E., Principe, J.: A new clustering evaluation function using Renyi’s information potential. In: Wells, R.O., Tian, J., Baraniuk, R.G., Tan, D.M., Wu, H.R. (eds.) Proc. of IEEE Int. Conf. Acoustics, Speech and Signal Processing (ICASSP 2000), Istanbul, pp. 3490–3493 (2000)

    Google Scholar 

  9. Gunn, S.: Support vector machines for classification and regression. Tech. Report ISIS-1-98, Univ. of Southampton, Dept. of Electronics and Computer Science (1998)

    Google Scholar 

  10. Haykin, S.S.: Neural networks: a comprehensive foundation. PrenticeHall, Englewood Cliffs (1999)

    MATH  Google Scholar 

  11. Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. PrenticeHall, Englewood Cliffs (1998)

    Google Scholar 

  12. Koschke, R., Eisenbarth, T.: A framework for experimental evaluation of clustering techniques. In: Proc. Int. Workshop on Program Comprehension (2000)

    Google Scholar 

  13. Rauber, A., Paralic, J., Pampalk, E.: Empirical evaluation of clustering algorithms. Malekovic, M., Lorencic, A. (eds.), 11th Int. Conf. Information and Intelligent Systems (IIS 2002), Varazdin, Croatia, September 20 - 22, Univ. of Zagreb (2000)

    Google Scholar 

  14. Schölkopf, B., Williamson, R.C., Smola, A.J., Shawe-Taylor, J.: SV estimation of a distribution’s support. In: Leen, T.K., Solla, S.A., Müller, K.R. (eds.) Advances in Neural Information Processing Systems 12. MIT Press, Cambridge (forthcomming), mlg.anu.edu.au/smola/publications.html

  15. Siegelmann, H., Ben-Hur, A., Horn, D., Vapnik, V.: Support vector clustering. J. Machine Learning Research 2, 125–137 (2001)

    Google Scholar 

  16. Vapnik, V.N.: The nature of statistical learning theory. Springer, Heidelberg (1995)

    MATH  Google Scholar 

  17. Vazirgiannis, M., Halkidi, M., Batistakis, Y.: On clustering validation techniques. Intelligent Information Systems J. 17(2), 107–145 (2001)

    Article  MATH  Google Scholar 

  18. Williamson, R., Schölkopf, B., Smola, A., Bartlett, P.: New support vector algorithms. Neural Computation 12(5), 1207–1245 (2000)

    Article  Google Scholar 

  19. Winter, R.: Formal validation of schema clustering for large information systems. In: Proc. First American Conference on Information Systems (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Estivill-Castro, V., Yang, J. (2003). Cluster Validity Using Support Vector Machines. In: Kambayashi, Y., Mohania, M., Wöß, W. (eds) Data Warehousing and Knowledge Discovery. DaWaK 2003. Lecture Notes in Computer Science, vol 2737. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45228-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45228-7_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40807-9

  • Online ISBN: 978-3-540-45228-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics