Clustering by Regression Analysis

  • Masahiro Motoyoshi
  • Takao Miura
  • Isamu Shioya
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2737)


In data clustering, many approaches have been proposed such as K-means method and hierarchical method. One of the problems is that the results depend heavily on initial values and criterion to combine clusters.

In this investigation, we propose a new method to avoid this deficiency. Here we assume there exists aspects of local regression in data. Then we develop our theory to combine clusters using \(\mathcal{F}\) values by regression analysis as criterion. We examine experiments and show how well the theory works.


Data Mining Multivariable Analysis Regression Analysis Clustering 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bezdek, J.C.: Numerical taxonomy with fuzzy sets. Journal of Mathematical Biology 1, 57–71 (1974)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Chakrabarti, K., Mehrotra, S.: Local Dimensionality Reduction: A New Approach to Indexing High Dimensional Spaces. In: Proc.VLDB (2000)Google Scholar
  3. 3.
    Cheeseman, P., et al.: Bayesian classification. In: Proc. ACM Artificial Intelligence, pp. 607–611 (1988)Google Scholar
  4. 4.
    Jain, A.K., Murty, M.N., Flynn, P.J.: Data Clutering – A Review. ACM Computing Surveys 31(3), 264–323 (1999)CrossRefGoogle Scholar
  5. 5.
    Japan Weather Association: Weather Data HIMAWARI, Maruzen (1998)Google Scholar
  6. 6.
    MacQueen, J.B.: Some methods for classification and analysis of multivariate observations. In: Proc. Fifth Berkeley Symposium observations, ProStatistics and Probability, vol. 1. University of California Press, Berkeley (1967)Google Scholar
  7. 7.
    Motoyoshi, M., Miura, T., Watanabe, K., Shioya, I.: Mining Temporal Classes from Time Series Data. In: Proc.ACM Conf. on Information and Knowledge Management, CIKM (2002)Google Scholar
  8. 8.
    Wallace, C.S., Dowe, D.L.: Intrinsic classification by MML-the Snob program. In: Proc. 7th Australian Joint Conference on Artificial Intelligence, pp. 37–44 (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Masahiro Motoyoshi
    • 1
  • Takao Miura
    • 1
  • Isamu Shioya
    • 2
  1. 1.Dept.of Elect.& Elect. Engr.HOSEI UniversityTokyoJapan
  2. 2.Dept.of Management and InformaticsSANNO UniversityKanagawaJapan

Personalised recommendations