A Temporal Study of Data Sources to Load a Corporate Data Warehouse

  • Carme Martin
  • Alberto Abelló
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2737)


The input data of the corporate data warehouse is provided by the data sources, that are integrated. In the temporal database research area, a bitemporal database is a database supporting valid time and transaction time. Valid time is the time when the fact is true in the modeled reality, while transaction time is the time when the fact is stored in the database. Defining a data warehouse as a bitemporal database containing integrated and subject-oriented data in support of the decision making process, transaction time in the data warehouse can always be obtained, because it is internal to a given storage system. When an event is loaded into the data warehouse, its valid time is transformed into a bitemporal element, adding transaction time, generated by the database management system of the data warehouse. However, depending on whether the data sources manage transaction time and valid time or not, we could obtain the valid time for the data warehouse or not. The aim of this paper is to present a temporal study of the different kinds of data sources to load a corporate data warehouse, using a bitemporal storage structure.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abelló, A., Martín, C.: A Bitemporal Storage Structure for a Corporate Data Warehouse. In: Proc. of the 5th. Int. Conf. on Enterprise Information Systems (ICEIS), pp. 177–183 (2003)Google Scholar
  2. 2.
    Böhlen, M., Snodgrass, R.T., Soo, M.D.: Coalescing in Temporal Databases. In: Proc. of the 22nd. Int. Conf. on Very Large Data Bases (VLDB), pp. 180–191 (1996)Google Scholar
  3. 3.
    Clifford, J., Dyreson, C., Isakowitz, T., Jensen, C.S., Snodgrass, R.T.: On the Semantics of ‘Now’ in Databases. ACM Transactions on Database Systems 22(2), 171–214 (1997)CrossRefGoogle Scholar
  4. 4.
    Inmon, W.H., Imhoff, C., Sousa, R.: Corporate Information Factory, 2nd edn. John Wiley & Sons, Chichester (1998)Google Scholar
  5. 5.
    Jarke, M., Lenzerini, M., Vassilious, Y., Vassiliadis, P. (eds.): Fundamentals of Data Warehousing. Springer, Heidelberg (2000)Google Scholar
  6. 6.
    Jensen, C.S., Clifford, J., Gadia, S.K., Segev, A., Snodgrass, R.T.: A Glossary of Temporal Database Concepts. ACM SIGMOD Record 21(3), 35–43 (1992)CrossRefGoogle Scholar
  7. 7.
    Jensen, C.S., Soo, M.D., Snodgrass, R.T.: Unifying Temporal Data Models via a Conceptual Model. Information Systems 19(7), 513–547 (1994)CrossRefGoogle Scholar
  8. 8.
    Pedersen, T.B., Jensen, C.S.: Research Issues in Clinical Data Warehousing. In: Proc. of the 10th. Int. Conf. on Statistical and Scientific Database Management (SSDBM), pp. 43–52 (1998)Google Scholar
  9. 9.
    Snodgrass, R.T., Ahn, I.: Temporal Databases. IEEE Computer 19(9), 35–42 (1986)Google Scholar
  10. 10.
    Snodgrass, R.T.: Developing Time-Oriented Database Applications in SQL. Morgan Kaufmann Publishers, San Francisco (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Carme Martin
    • 1
  • Alberto Abelló
    • 1
  1. 1.Departament de Llenguatges i Sistemes InformàticsUniversitat Politècnica de CatalunyaBarcelona

Personalised recommendations