Advertisement

An Access Time Cost Model for Spatial Range Queries on Broadcast Geographical Data over Air

  • Jianting Zhang
  • Le Gruenwald
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2736)

Abstract

Wireless data broadcasting is well known for its excellent scalability. Most geographical data, such as weather and traffic, is public information and has a large number of potential users. Broadcast is a good mechanism that can be used to transmit the data to users at this scale. In this paper, we propose a cost model for access time in processing spatial range queries on broadcast geographical data over air. We also propose heuristics in generating orderings of broadcast sequences and evaluate their performances based on the cost model.

Keywords

Data Item Cost Model Access Time Range Query Query Window 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beckmann, N., Kriegel, H.-P., Schneider, R., Seeger, B.: The R*-tree: An efficient and robust access method for points and rectangles. In: SIGMOD Conference, pp. 322–331 (1990)Google Scholar
  2. Chehadeh, Y.C., Hurson, A.R., Kavehrad, M.: Object Organization on a Single Broadcast Channel in the Mobile Computing Environment. Multimedia Tools and Applications 9(1), 69–94 (1999)CrossRefGoogle Scholar
  3. Daíz, J., Petit, J., Serna, M.: A Survey on Graph Layout Problems. ACM Computing Surveys 34(3), 313–356 (2002)CrossRefGoogle Scholar
  4. Chung, Y.D., Kim, M.-H.: Effective Data Placement for Wireless Broadcast. Distributed and Parallel Databases 9(2), 133–150 (2001)zbMATHCrossRefGoogle Scholar
  5. Gaede, V., Günther, O.: Multidimensional access methods. ACM Computing Survey 30(2), 170–231 (1998)CrossRefGoogle Scholar
  6. Guttman, A.: R-trees: A dynamic index structure for spatial searching. In: SIGMOD Conference, pp. 47–54 (1984)Google Scholar
  7. Hambrusch, S., Liu, C.-M., Aref, W., Prabhakar, S.: Query Processing in Broadcasted Spatial Index Trees. In: SSTD, pp. 502–521 (2001)Google Scholar
  8. Hu, Q., Lee, W.-C., Lee, D.L.: A Hybrid Index Technique for Power Efficient Data Broadcast. Distributed and Parallel Databases 9(2), 151–177 (2001)zbMATHCrossRefGoogle Scholar
  9. Hu, Q., Lee, W.-C., Lee, D.L.: Indexing Techniques for Power Management in Multi-Attribute Data Broadcast. MONET 6(2), 185–197 (2001)zbMATHGoogle Scholar
  10. Imielinski, T., Viswanathan, S., Badrinath, B.R.: Energy Efficient Indexing On Air. In: SIGMOD Conference, 25–36 (1994)Google Scholar
  11. Imielinski, T., Viswanathan, S., Badrinath, B.: Power Efficient Filtering of Data on Air. In: EDBT, pp. 245–258 (1994)Google Scholar
  12. Imielinski, T., Viswanathan, S., Badrinath, B.R.: Data on Air: Organization and Access. IEEE Transactions on Knowledge and Data Engineering 9(3), 353–372 (1997)CrossRefGoogle Scholar
  13. König-Ries, B., et al.: Report on the NSF Workshop on Building an Infrastructure for Mobile and Wireless Systems. SIGMOD Record 31(2), 73–79 (2002)CrossRefGoogle Scholar
  14. Koren, Y., Harel, D.: A Multi-Scale Algorithm for the Linear Arrangement Problem. In: Kučera, L. (ed.) WG 2002. LNCS, vol. 2573, pp. 293–306. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  15. Lee, G., Lo, S.-C., Chen, A.L.P.: Data Allocation on Wireless Broadcast Channels for Efficient Query Processing. IEEE Transactions on Computers 51(10), 1237–1252 (2002)CrossRefMathSciNetGoogle Scholar
  16. Lee, W.-C., Lee, D.L.: Using Signature Techniques for Information Filtering in Wireless and Mobile Environments. Distributed and Parallel Databases 4(3), 205–227 (1996)CrossRefGoogle Scholar
  17. Pagel, B.-U., Six, H.-W., Toben, H., Widmayer, P.: Towards an Analysis of Range Query Performance in Spatial Data Structures. In: PODS 1993, pp. 214–221 (1993)Google Scholar
  18. Rigaux, P., Scholl, M.O., Voisard, A.: Spatial Databases: With Application to GIS. Academic Press, San Diego (2002)Google Scholar
  19. Sellis, T., Roussopoulos, N., Faloutsos, C.: The R+-Tree: A Dynamic Index for Multi-Dimensional Objects. VLDB Journal, 507–518 (1987)Google Scholar
  20. Seydim, A.Y., Dunham, M.H., Kumar, V.: Location dependent query processing. MobiDE, 47–53 (2001)Google Scholar
  21. Theodoridis, Y., Sellis, T.K.: A Model for the Prediction of R-tree Performance. In: PODS, pp. 161–171 (1996)Google Scholar
  22. Theodoridis, Y., Stefanakis, E., Sellis, T.K.: Efficient Cost Models for Spatial Queries Using R-Trees. TKDE 12(1), 19–32 (2000)Google Scholar
  23. Bar-Yehuda, R.: Computing an optimal orientation of a balanced decomposition tree for linear arrangement problems. Journal of Graph Algorithms and Applications 5(4), 1–27 (2001)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Jianting Zhang
    • 1
  • Le Gruenwald
    • 1
  1. 1.School of Computer ScienceUniversity of OklahomaNormanUSA

Personalised recommendations