Capturing Uncertainty in Spatial Queries over Imprecise Data

  • Xingbo Yu
  • Sharad Mehrotra
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2736)


Emerging applications using miniature electronic devices (e.g., tracking mobile objects using sensors) generate very large amounts of highly dynamic data that poses very high overhead on databases both in terms of processing and communication costs. A promising approach to alleviate the resulting problems is to exploit the application’s tolerance to bounded error in data in order to reduce the overheads. In this paper, we consider imprecise spatial data and the correlation between the data quality and precision requirements given in user queries. We first provide an approach to answer spatial range queries over imprecise data by associating a probability value with each returned object. Then, we present a novel technique to set the data precision constraints for the data collecting process, so that a probabilistic guarantee on the uncertainty in answers to user queries could be provided. The algorithms exploit the fact that objects in two-dimensional space are distributed under certain distribution function. Experimental results are also included.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ross, S.: A First Course in Probability. Prentice Hall, Englewood Cliffs (2002)Google Scholar
  2. 2.
    Wolfson, O., Xu, B., Chamberlain, S., Jiang, L.: Moving Objects Databases: Issues and Solutions. In: SSDBM, pp. 111–122 (1998)Google Scholar
  3. 3.
    Lazaridis, I., Mehrotra, S.: Capturing Sensor-Generated Time Series with Quality Guarantees. In: International Conference on Data Engineering, ICDE (March 2003)Google Scholar
  4. 4.
    Sadri, F.: Modeling Uncertainty in Databases. In: Proceedings of the Seventh IEEE International Conference on Data Engineering (April 1991)Google Scholar
  5. 5.
    Dyreson, C.E.: A Bibliography on Uncertainty Management in Information Systems. In: Uncertainty Management in Information Systems: From Needs to Solutions, pp. 415–458. Kluwer Academic Publishers, Dordrecht (1997)Google Scholar
  6. 6.
    Yu, H., Vahdat, A.: Efficient Numerical Error Bounding for Replicated Network Services. In: VLDB 2000 , pp. 123–133 (2000)Google Scholar
  7. 7.
    Schneider, M.: Uncertainty Management for Spatial Data in Databases: Fuzzy Spatial Data Types. In: Güting, R.H., Papadias, D., Lochovsky, F.H. (eds.) SSD 1999. LNCS, vol. 1651, pp. 330–351. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  8. 8.
    Pfoser, D., Jensen, C.S.: Capturing the Uncertainty of Moving-Object Representations. In: Güting, R.H., Papadias, D., Lochovsky, F.H. (eds.) SSD 1999. LNCS, vol. 1651, pp. 111–132. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  9. 9.
    Olston, C., Jiang, J., Widom, J.: Adaptive Filters for Continuous Queries over Distributed Data Streams. SIGMOD (2003) (to appear)Google Scholar
  10. 10.
    Erwig, M., Hartmut, R., Schneider, M., Vazirgiannis, M.: Spatio-Temporal Data Types: An Approach to Modeling and Querying Moving Objects in Databases. GeoInformatica 3(3), 269–296 (1999)CrossRefGoogle Scholar
  11. 11.
    Vazirgiannis, M., Wolfson, O.: A Spatiotemporal Model and Language for Moving Objects on Road Networks. In: Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.) SSTD 2001. LNCS, vol. 2121, pp. 20–35. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. 12.
    Vazirgiannis, M.: Uncertainty Handling in Spatial Relationships. In: SAC, vol. (1), pp. 494–500 (2000)Google Scholar
  13. 13.
    Saltenis, S., Jensen, C.S., Leutenegger, S.T., Lopez, M.A.: Indexing the Positions of Continuously Moving Objects. SIGMOD, 331–342 (2000)Google Scholar
  14. 14.
    Theodoridis, Y., Sellis, T.K., Papadopoulos, A., Manolopoulos, Y.: Specifications for Efficient Indexing in Spatiotemporal Databases. In: SSDBM, pp. 123–132 (1998)Google Scholar
  15. 15.
    Kollios, G., Gunopulos, D., Tsotras, V.J.: On Indexing Mobile Objects. In: PODS, pp. 261–272 (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Xingbo Yu
    • 1
  • Sharad Mehrotra
    • 1
  1. 1.School of Information and Computer ScienceUniversity of CaliforniaIrvineUSA

Personalised recommendations