Advertisement

Multi-bit Watermarking Scheme Based on Addition of Orthogonal Sequences

  • Xinpeng Zhang
  • Shuozhong Wang
  • Kaiwen Zhang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2776)

Abstract

In this paper, a scheme of watermark embedding based on a set of orthogonal binary sequences is introduced. The described technique is intended to be incorporated into various public watermarking frameworks developed for different digital media including images and audio signals. Unlike some previous methods using PN sequences in which each sequence carries only one bit of the watermark data, the proposed approach maps a number of bits to a single sequence from an orthogonal set. Both analytical and experimental studies show that, owing to the full exploitation of information carrying capability of each binary sequence, the performance is significantly improved compared with previous methods based on a one-bit-per-sequence technique.

Keywords

Image Watermark Audio Signal Binary Sequence JPEG Compression Watermark Embedding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Petitcolas, F.A.P., Anderson, R.J., Kuhn, M.G.: Information Hiding — A Survey. In: Proc. IEEE, vol. 87, pp. 1062–1078 (1999)Google Scholar
  2. 2.
    Hartung, F., Kutter, M.: Multimedia Watermarking Techniques. In: Proc. IEEE, vol. 87, pp. 1079–1107 (1999)Google Scholar
  3. 3.
    Piva, A., Bartolini, F., Cappellini, V., Barni, M.: Exploiting the Cross-Correlation of RGB-Channels for Robust Watermarking of Color Images. In: Proc. IEEE Int. Conf. Image Processing, Kobe, Japan, vol. 1, pp. 306–310 (1999)Google Scholar
  4. 4.
    Bassia, P., Pitas, I., Nikolaidis, N.: Robust Audio Watermarking in the Time Domain. IEEE Trans. Multimedia 3(2), 232–241 (2001)CrossRefGoogle Scholar
  5. 5.
    Solachidis, V., Nikolaidis, N., Pitas, I.: Watermarking Polygonal Lines Using Fourier Descriptors. In: Proc. IEEE Int. Conf. On Acoustics, Speech, and Signal Processing, Istanbul, Turkey, pp. 1955–1958 (June 2000)Google Scholar
  6. 6.
    Piva, A., Barni, M., Bartonlini, F., Cappellini, V.: DCT-Based Watermark Recovering without Resorting to the Uncorrupted Original Image. In: Proc. IEEE Int. Conf. Image Processing, Chicago, Illinois, USA, pp. 520–523 (October 1997)Google Scholar
  7. 7.
    Kim, J.R., Moon, Y.S.: A Robust Wavelet-Based Digital Watermarking Using Level- Adaptive Thresholding. In: Proc. IEEE Int. Conf. Image Processing, Kobe, Japan, vol. 2, pp. 226–230 (1999)Google Scholar
  8. 8.
    Inoue, H., et al.: An Image Watermarking Method Based on the Wavelet Transform. In: Proc. IEEE Int. Conf. Image Processing, Kobe, Japan, vol.1, pp. 296–300 (October 1999)Google Scholar
  9. 9.
    Barni, M., Bartolini, F., Piva, A.: Improved Wavelet-Based Watermarking Through Pixel-Wise Masking. IEEE Trans. on Image Processing 10(5), 783–791 (2001)zbMATHCrossRefGoogle Scholar
  10. 10.
    Zhang, X., Wang, S.: Watermarking Scheme Capable of Resisting Attacks Based on Availability of Inserter. Signal Processing 82, 1801–1804 (2002)zbMATHCrossRefGoogle Scholar
  11. 11.
    Stankovic, S., Djurovic, I., Pitas, I.: Watermarking in the Space/Spatial-Frequency Domain Using Two-Dimensional Radon-Wigner Distribution. IEEE Trans. on Image Processing 10, 650–658 (2001)zbMATHCrossRefGoogle Scholar
  12. 12.
    Cheng, Q., et al.: An additive Approach to Transform-Domain Information Hiding and Optimum Detection Structure. IEEE Trans. Multimedia 3(3), 273–283 (2001)CrossRefGoogle Scholar
  13. 13.
    Podilchuk, C.I., Zeng, W.: Image-Adaptive Watermarking Using Visual Models. IEEE J. on Selected Areas in Communications 16, 529–539 (1998)CrossRefGoogle Scholar
  14. 14.
    Swanson, M.D., et al.: Multiresolution Scene-Based Video Watermarking Using Perceptual Models. IEEE J. on Selected Areas in Communications 16, 540–550 (1998)CrossRefGoogle Scholar
  15. 15.
    Swanson, M.D., Zhu, B., Tewfik, A.H., Boney, L.: Robust Audio Watermarking Using Perceptual Masking. Signal Processing 66, 337–355 (1998)zbMATHCrossRefGoogle Scholar
  16. 16.
    Hernandez, J., Perez-Gonzalez, F., Rodriguez, J., Nieto, G.: Performance Analysis of a 2-D-Multipulse Amplitude Modulation Scheme for Data Hiding and Watermarking of Still Image. IEEE J. on Selected Areas in Communications 16, 510–528 (1998)CrossRefGoogle Scholar
  17. 17.
    Eggers, J.J., Girod, B.: Quantization Watermarking. In: Proceedings of SPIE, Security and Watermarking of Multimedia Contents, San Jose, Ca, vol. 3971 (January 2000)Google Scholar
  18. 18.
    Chen, B., Wornell, G.W.: Quantization Index Modulation: A Class of Provably Good Methods for Digital Watermarking and Information Embedding. IEEE Trans. on Information Theory 47, 1423–1443 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Langelaar, G.C., Lagendijk, R.L.: Optimal Different Energy Watermarking of DCT Encoded Images and Video. IEEE Trans. on Signal Processing 10(1), 148–158 (2001)zbMATHGoogle Scholar
  20. 20.
    Barni, M., et al.: A New Decoder for the Optimum Recovery of Nonadditive Watermarks. IEEE Trans. on Image Processing 10(5), 755–766 (2001)CrossRefGoogle Scholar
  21. 21.
    Liang, T.-S., Rodriguez, J.J.: Improved Watermark Robustness via Spectrum Equalization. In: Proc. IEEE Int. Conf. On Acoustics, Speech, and Signal Processing, Istanbul, Turkey, pp. 1951–1954 (June 2000)Google Scholar
  22. 22.
    Zhang, X., Zhang, K., Wang, S.: Multispectral Image Watermarking Based on KLT. In: Proceedings of the SPIE, vol. 4551, pp. 107–114 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Xinpeng Zhang
    • 1
  • Shuozhong Wang
    • 1
  • Kaiwen Zhang
    • 1
  1. 1.Communication & Information EngineeringShanghai UniversityShanghaiChina

Personalised recommendations