Simulation-Based Exploration of SVD-Based Technique for Hidden Communication by Image Steganography Channel

  • Vladimir Gorodetsky
  • Vladimir Samoilov
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2776)


The paper presents an empirical study of the properties of a new image-based information hiding technique that are critical for hidden communication. The technique is based on the Singular Value Decomposition (SVD) transform of a digital image and uses embedding a bit of data through slight modifications of a linear combination of singular values of a small block of the segmented cover image. The primary objective of the study is to establish the dependence between the capacity rate of the invisibly embedded data and robustness of the steganographic channel distorted by JPEG compression while varying embedding procedure attributes. The second objective of the empirical study is to establish practical recommendations concerning adjusting of the controllable attributes of the SVD-based data embedding procedure given the message size and the threshold for Bit Error Rate. The results of the study provide evidence that the developed information hiding approach is promising for hidden communication.


Singular Value Decomposition Cover Image Singular Vector Steganography Channel JPEG Compression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, R., Petitcolas, F.: On the Limits of Steganography. IEEE Journal of Selected Areas of Communications 16(4), 474–481 (1998)CrossRefGoogle Scholar
  2. 2.
    Andrews, H.C., Patterson, C.L.: Singular Value Decomposition (SVD) for Image Coding. IEEE Transaction on Communication 24, 425–432 (1976)CrossRefGoogle Scholar
  3. 3.
    Bender, W., Gruhl, D., Morimoto, N., Lu, A.: Techniques for Data Hiding. IBM System Journal 35(3&4) (1996)Google Scholar
  4. 4.
    Bruyndonckx, O., Quisquater, J.J., Macq, B.: Spatial Method for Copyright Labeling of Digital Images. In: Proceedings of IEEE Workshop on nonlinear signal and image Processing, Greece (1995)Google Scholar
  5. 5.
    Burget, S., Koch, E., Zhao, J.: A Novel Method for Copyright Labeling Digitized Image Data. Technical Report, Fraunhofer Institute for Computer Graphics, Germany (1994)Google Scholar
  6. 6.
    Chen, B., Wornell, G.W.: Dither Modulation: A new Approach to Digital Watermarking and Information Embedding. In: Wong, P.W., Delp, E.J. (eds.), San Jose, CA, USA, vol. 3657 (1999)Google Scholar
  7. 7.
    Cox, I., Miller, M.: A Review on Watermarking and the Importance of Perceptual Modeling. In: Proceedings of the Conference on Electronic Imaging (1997)Google Scholar
  8. 8.
    Cox, I., Bloom, J., Miller, M.: Digital Watermarking: Principles & Practice. Morgan Kaufmann, San Francisco (2001)Google Scholar
  9. 9.
    Gorodetski, V., Skormin, V., Popyack, L.: SVD approach to Digital Image Lossy Compression. In: Proceedings of the 4-th Conference Systems, Cybernetics and Informatics-2000 (SCI-2000), USA (2000)Google Scholar
  10. 10.
    Gorodetski, V., Skormin, V., Popyack, L., Samoilov, V.: SVD-based Approach to Transparent Embedding Data into Digital Images. In: Gorodetski, V.I., Skormin, V.A., Popyack, L.J. (eds.) MMM-ACNS 2001. LNCS, vol. 2052, pp. 263–274. Springer, Heidelberg (2001)Google Scholar
  11. 11.
    Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1988)Google Scholar
  12. 12.
    Johnson, N., Jagodia, S.: Exploring Steganography: Seeing the Unseen. Computer, pp. 26–34 (February 1998)Google Scholar
  13. 13.
    Johnson, N., Duric, Z., Jajodia, S.: Information Hiding. In: Steganography and Watermarking– Attacks and Countermeasures. Kluwer Academic Pub., Dordrecht (2000)Google Scholar
  14. 14.
    Katzenbeisser, S., Petitcolas, F.A.P. (eds.): Information Hiding Techniques for Staganography and Digital Watermarking. Artech House Books (2000)Google Scholar
  15. 15.
    Kundur, D., Hatzinakos, D.: A robust Digital Watermarking Method using Waveletbased Fusion. In: Proceedings of the International Conference on Image Processing, USA, vol. 1. IEEE, Los Alamitos (1997)CrossRefGoogle Scholar
  16. 16.
    Machado, R.: EZ Stego.,
  17. 17.
    Marvel, L.: Image Steganography for Hidden Communication. Ph.D. Thesis, University of Delaware (1999),
  18. 18.
    Marvel, L., Boncelet, C.: Capacity of the Additive Steganographic Channel (1999), available at
  19. 19.
    Marvel, L., Boncelet, C., Retter, C.: Spread Spectrum Image Steganography. IEEE Transaction on Image Processing 1075–1083 (1999)Google Scholar
  20. 20.
    Matsui, K., Tanaka, K.: Video Steganography: How to Embed a Signature in a Picture. In: Proceedings of IMA Intellectual property, vol. 1(1), pp. 187–206 (1999)Google Scholar
  21. 21.
    Petitcolas, F.A.P., Anderson, R.J., Kuhn, M.: Information Hiding–A Survey. In: Proceedings of the IEEE, vol. 87(7), pp. 1062–1078 (1999)Google Scholar
  22. 22.
    Pitas, I.: A method for signature casting on digital images. In: Proceedings of the International Conference on Image Processing ICIP 1996 (1996)Google Scholar
  23. 23.
    Piva, A., Barni, M., Bartoloni, E., Cappellini, V.: DCT-based Watermarking Recovering without Restoring to the Uncorrupted Original Image. In: Proceedings of the International Conference on Image Processing (ICIP) vol. 1. IEEE, Los Alamitos (1997)CrossRefGoogle Scholar
  24. 24.
    Podilchuck, C.I., Zeng, W.: Perceptual Watermarking of Still Images. In: Proceedings of the Workshop on Multimedia Signal Processing, Princeton, NJ, USA (1997)Google Scholar
  25. 25.
    Puate, J., Jordan, F.: Using Fractal Compression Scheme to Embed a Digital Signature into an Image. In: Proceedings of SPIE, Boston, MA, USA, vol. 2915, pp. 108–118 (1996)Google Scholar
  26. 26.
    Smith, J.R., Comiskey, B.O.: Modulation and Information Hiding in Images. In: Anderson, R. (ed.) IH 1996. LNCS, vol. 1174, pp. 207–226. Springer, Heidelberg (1996)Google Scholar
  27. 27.
    Swanson, M.D., Kobayashi, M., Tewfic, A.H.: Multimedia Data Embedding and Watermarking Technologies. In: Proceedings of the IEEE, vol. 86(6), pp. 1064–1087 (1998)Google Scholar
  28. 28.
    Tanaka, K., Nakamura, Y., Mitsui, K.: Embedding the Attribute Information into a Dithered Image. Systems and Computers in Japan 21(7) (1990)Google Scholar
  29. 29.
    van Schydel, R., Tirkel, A., Osborne, C.: A digital Watermarking. In: Proceedings of ICASSP, Piscataway, vol. II, pp. 86–90. IEEE, Los Alamitos (1994)Google Scholar
  30. 30.
    Waldemar, P., Ramstad, T.: Hibrid KLT-SVD Image Compression. In: Proceedings IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 4, pp. 2713–2716 (1997)Google Scholar
  31. 31.
    Yang, J.-F., Lu, C.-L.: Combined Techniques of Singular Value Decomposition and Vector Quantization for Image Coding. IEEE Transaction on Image Processing 4(8), 1141–1146 (1995)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Vladimir Gorodetsky
    • 1
  • Vladimir Samoilov
    • 1
  1. 1.St. Petersburg Institute for Informatics and AutomationSt.PetersburgRussia

Personalised recommendations