Advertisement

Linear Cryptanalysis on SPECTR-H64 with Higher Order Differential Property

  • Youngdai Ko
  • Deukjo Hong
  • Seokhie Hong
  • Sangjin Lee
  • Jongin Lim
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2776)

Abstract

In this paper, we find linear equations of SPECTR-H64 using the property of controlled permutation boxes. Also, we construct the fourth-order differential structure using the property that the algebraic degree of the function G is 3, which is the only non-linear part of SPECTR-H64. These linear equations and structures enable us to attack the reduced 6 round SPECTR-H64. So, we can recover the 6-th round subkey with about 244 chosen plaintexts and 2229.6 steps which are lower than the exhaustive search 2256.

Keywords

Linear equation SPECTR-H64 Controlled Permutation Higher order differential Algebraic degree 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Goots, N.D., Moldovyan, A.A., Moldovyan, N.A.: Fast Encryption Algorithm SPECTR-H64. In: Gorodetski, V.I., Skormin, V.A., Popyack, L.J. (eds.) MMM-ACNS 2001. LNCS, vol. 2052, pp. 275–286. Springer, Heidelberg (2001)Google Scholar
  2. 2.
    Lee, C., Hong, D., Lee, S., Lee, S., Yang, H., Lim, J.: A Chosen Plaintext Linear Attack on Block Cipher CIKS-1. In: Deng, R.H., Qing, S., Bao, F., Zhou, J. (eds.) ICICS 2002. LNCS, vol. 2513, pp. 456–468. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Matsui, M.: Linear Cryptanalysis Method for DES Cipher. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, p. 386. Springer, Heidelberg (1994)Google Scholar
  4. 4.
    Knudsen, L.: Truncated and Higher Order Differentials. In: Preneel, B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 196–211. Springer, Heidelberg (1995)Google Scholar
  5. 5.
    Moldovyan, A.A., Moldovyan, N.A.: A method of the cryptographical transformation of binary data blocks. Russian patent number 2141729 Bull. no. 32 (1999)Google Scholar
  6. 6.
    Lai, X.: Higher order derivatives and differential cryptanalysis. In: Proc. “Symposium on Communication, Coding and Cryptography”, Monte-Verita, Ascona, Switzerland, Feb. 10 13. in honor of James L.Massy on the occasion of his 60’th birthday (1994) (to appear)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Youngdai Ko
    • 1
  • Deukjo Hong
    • 1
  • Seokhie Hong
    • 1
  • Sangjin Lee
    • 1
  • Jongin Lim
    • 1
  1. 1.Center for Information Security Technologies(CIST)Korea UniversitySeoulKorea

Personalised recommendations