Advertisement

A Signcryption Scheme Based on Secret Sharing Technique

  • Mohamed Al-Ibrahim
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2776)

Abstract

Signcryption is a cryptographic primitive that performs signing and encryption simultaneously, at less cost than is required by the traditional signature-then-encryption approach. In this paper, a new signcryption scheme is proposed for the open problem posed by Zheng, and is based on Secret Sharing technique. The scheme is an “all-in-one” security approach: it provides privacy, authentication, integrity and non-repudiation, all with less computational cost as well as communication overhead. Yet, the scheme is not restricted to any particular cryptosystem and could be designed with any cryptographic cryptosystem.

Keywords

Hash Function Secret Sharing Authentication Scheme Mutual Authentication Modular Exponentiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    An, J., Dodis, Y., Rabin, T.: On the Security of Joint Signature and Encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 83–107. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Bellare, M., Namprempre, C.: Authenticated Encryption: Relations among notions and analysis of the composition paradigm. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. 3.
    Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among notions of security for public-key encryption schemes. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 26–45. Springer, Heidelberg (1998)Google Scholar
  4. 4.
    Diffie, W., Hellman, M.: New Directions in Cryptography. IEEE Trans. on Inform. Theory IT-22, 644–654 (1976)CrossRefMathSciNetGoogle Scholar
  5. 5.
    ElGamal, T.: A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms. IEEE Trans. on Inform. Theory IT-31, 469–472 (1985)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Menezes, A., Van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1997)zbMATHGoogle Scholar
  7. 7.
    National Institute of Standards and Technology (NIST). FIPS Publication 180: Secure Hash Standards (SHS), May 11 (1993)Google Scholar
  8. 8.
    Pieprzyk, J., Pointcheval, D.: Parallel Cryptography. In: Safavi-Naini, R., Seberry, J. (eds.) ACISP 2003. LNCS, vol. 2727. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Pieprzyk, J., Okamato, E.: Verifiable secret sharing. In: Song, J.S. (ed.) ICISC 1999. LNCS, vol. 1787, pp. 169–183. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  10. 10.
    Rohatchi, P.: A Compact and Fast Hybrid Signature Scheme for Multicast Packet Authentication. In: Proc. of 6th ACM conference on computer and communications security (1999)Google Scholar
  11. 11.
    Rivest, R., Shamir, A., Adleman, L.: A Method for Obtaining Digital Signatures and Public-Key Cryptosystems. Communications of the ACM 21, 120–126 (1978)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Shamir, A.: How to share a secret. Communications of the ACM 22, 612–613 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Steinfeld, R., Zheng, Y.: A Signcryption scheme based on Integer Factorization. In: Okamoto, E., Pieprzyk, J.P., Seberry, J. (eds.) ISW 2000. LNCS, vol. 1975, pp. 308–322. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  14. 14.
    Zheng, Y.: Digital Signcryption or How to Achieve Cost (Signature & Encryption < < Cost (Signature) + Cost (Encryption). In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 165–179. Springer, Heidelberg (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Mohamed Al-Ibrahim
    • 1
  1. 1.Center for Advanced Computing Department of ComputingMacquarie UniversitySydneyAustralia

Personalised recommendations