Pushing Down Bit Filters in the Pipelined Execution of Large Queries

  • Josep Aguilar-Saborit
  • Victor Muntés-Mulero
  • Josep-L. Larriba-Pey
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2790)


We propose a new strategy to use Bit Filters for complex pipelined queries on large databases that we call Pushed Down Bit Filters. The objective of the strategy is to make use of the Bit Filters already created for upper nodes of the execution plan, in the leaves of the plan. The aim of this strategy is to reduce the traffic between the nodes of the execution plan. When traffic is reduced, the amount of CPU work is reduced and, in most of the cases, I/O is also reduced. In addition, this technique shows no degradation in cases with little effectiveness.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Communications of the ACM 13(7), 422–426 (1970)zbMATHCrossRefGoogle Scholar
  2. 2.
    Bratbergsengen, K.: Hashing methods and relational algebra operations. In: Proc. of the Conf. on Very Large Data Bases (VLDB), pp. 323–333 (1984)Google Scholar
  3. 3.
    Chan, C.-Y., Ioannidis, Y.E.: Bitmap index design and evaluation. In: Proc. of the SIGMOD Conf. on the Management of Data, pp. 355–366 (1998)Google Scholar
  4. 4.
    Chen, M.-S., Hsiao, H.-I., Yu, P.S.: On applying hash filters to improving the execution of multi-join queries. VLDB Journal: Very Large Data Bases 6(2), 121–131 (1997)CrossRefGoogle Scholar
  5. 5.
    Gongloor, P., Patkar, S.: Hash joins: Implementation and tuning, release 7.3. Technical report, Oracle Technical Report (March 1997)Google Scholar
  6. 6.
    Graefe, G., Bunker, R., Cooper, S.: Hash joins and hash teams in microsoft sql server. In: Proceedings of the 25th VLDB Conference, August 1998, pp. 86–97 (1998)Google Scholar
  7. 7.
    Hsiao, H.-I., Chen, M.-S., Yu, P.S.: Parallel execution of hash joins in parallel databases. IEEE-Trans. on Parallel and Distributed Systems 8(8), 872–883 (1997)CrossRefGoogle Scholar
  8. 8.
    Bayardo Jr., R.J., Miranker, D.P.: Processing queries for first few answers. In: CIKM, pp. 45–52 (1996)Google Scholar
  9. 9.
    Kemper, A., Kossmann, D., Wiesner, C.: Generalized hash teams for join and group-by. In: Proc. of the Conf. on Very Large Data Bases (VLDB), September 1999, pp. 30–41 (1999)Google Scholar
  10. 10.
    O‘Neil, P., Graefe, G.: Multi-table joins through bitmapped join indices. SIGMOD Record 24(3), 8–11 (1995)CrossRefGoogle Scholar
  11. 11.
  12. 12.
    Schneider, D.A., DeWitt, D.J.: A performance evaluation of four parallel join algorithms in a shared-nothing multiprocessor environment. In: Proc. ACM SIGMOD, pp. 110–121 (1989)Google Scholar
  13. 13.
    Valduriez, P., Gardarin, G.: Join and semi-join algorithms for a multiprocessor database machine. TODS 9(1), 133–161 (1984)CrossRefGoogle Scholar
  14. 14.
    Wilschut, A.N., Apers, P.M.G.: Dataflow query execution in a parallel mainmemory environment. Distributed and Parallel Databases 1(1), 103–128 (1993)CrossRefGoogle Scholar
  15. 15.
    Wu, M.-C., Buchmann, A.P.: Encoded bitmap indexing for data warehouses. In: Intl. Conference on Data Engineering, pp. 220–230 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Josep Aguilar-Saborit
    • 1
  • Victor Muntés-Mulero
    • 1
  • Josep-L. Larriba-Pey
    • 1
  1. 1.Departament d’Arquitectura de Computadors, CEPBA-IBM Research InstituteUniversitat Politècnica de Catalunya – Campus Nord UPCBarcelona

Personalised recommendations