Advertisement

An Energy-Oriented Evaluation of Communication Optimizations for Microsensor Networks

  • I. Kadayif
  • M. Kandemir
  • A. Choudhary
  • M. Karakoy
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2790)

Abstract

Wireless, microsensor networks have potential for enabling a myriad of applications for sensing and controlling the physical world. While architectural/circuit-level techniques are critical for the success of these networks, software optimizations are also expected to become instrumental in extracting the maximum benefits from the performance and energy behavior angles. In this paper, focusing on a sensor network where the sensors form a two-dimensional mesh, we experimentally evaluate a set of compiler-directed communication optimizations from the energy perspective. Our experimental results obtained using a set of array-intensive benchmarks show significant reductions in communication energy spent during execution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amarasinghe, S.P., Anderson, J.M., Lam, M.S., Tseng, C.W.: The SUIF compiler for scalable parallel machines. In: Proc. SIAM Conference on Parallel Processing for Scientific Computing (February 1995)Google Scholar
  2. 2.
    Asada, G., Dong, M., Lin, T.S., Newberg, F., Pottie, G., Kaiser, W.J.: Wireless integrated network sensors: low power systems on a chip. In: Proc. ESSCIRC 1998, Hague, Netherlands (September 1998)Google Scholar
  3. 3.
    Catthoor, F., et al.: Custom Memory Management Methodology – Exploration of Memory Organization for Embedded Multimedia System Design. Kluwer Academic Publishers, Dordrecht (1998)Google Scholar
  4. 4.
    Chandrakasan, A., et al.: Design of High-Performance Microprocessor Circuits. IEEE Press, Los Alamitos (2001)Google Scholar
  5. 5.
    Cho, S.-H., Chandrakasan, A.: Energy-efficient protocols for low duty cycle wireless microsensor networks. In: Proc. ICASSP 2001 (May 2001)Google Scholar
  6. 6.
    Cmelik, B., Keppel, D.: Shade: a fast instruction-set simulator for execution profiling. In: Proc. the 1994 ACM Sigmetrics Conference on the Measurement and Modeling of Computer Systems (May 1994)Google Scholar
  7. 7.
    Hill, J., et al.: System architecture directions for network sensors. In: Proc. ASPLOS 2000 (2000)Google Scholar
  8. 8.
    Kandemir, M., et al.: A global communication optimization technique based on dataf flow analysis and linear algebra. ACM Transactions on Programming Languages and Systems 21(6), 1251–1297 (1999)CrossRefGoogle Scholar
  9. 9.
    Shih, E., et al.: Physical layer driven protocol and algorithm design for energyefficient wireless sensor network. In: Proc. the 7th Annual International Conference on Mobile Computing and Networking, Rome Italy, July 16-22 (2001)Google Scholar
  10. 10.
    Tseng, C.-W.: An optimizing Fortran D compiler for MIMD distributed-memory machines. Ph.D. Thesis, Rice COMP TR93-199, Dept. of Computer Science, Rice University (January 1993)Google Scholar
  11. 11.
    Vijaykrishnan, N., et al.: Energy-driven integrated hardware-software optimizations using SimplePower. In: Proc. the International Symposium on Computer Architecture (June 2000)Google Scholar
  12. 12.
    Wilton, S., Jouppi, N.P.: CACTI: an enhanced cycle access and cycle time model. IEEE Journal of Solid-State Circuits, 677–687 (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • I. Kadayif
    • 1
  • M. Kandemir
    • 1
  • A. Choudhary
    • 2
  • M. Karakoy
    • 3
  1. 1.Pennsylvania State UniversityUniversity ParkUSA
  2. 2.Northwestern UniversityEvanstonUSA
  3. 3.Imperial CollegeLondonUK

Personalised recommendations