Advertisement

Lower Bounds on the Size of Quantum Automata Accepting Unary Languages

  • Alberto Bertoni
  • Carlo Mereghetti
  • Beatrice Palano
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2841)

Abstract

In this paper, we study measure-once 1-way quantum automata accepting unary languages, i.e., of type L ⊂ {a}* . We give two lower bounds on the number of states of such automata accepting certain languages.
  1. 1

    We prove the existence of n-periodic languages requiring \(\Omega (\sqrt{\frac{n}{log n}})\) states to be recognized. This should be compared with results in the literature stating that every n-periodic language can be recognized with \(O(\sqrt{n})\) states.

     
  2. 2

    We give a lower bound on the number of states of automata accepting the finite language L < n  = {a k  ∈ L | k < n}, for a given L. This bound is obtained by using quantum information theory arguments.

     

Keywords

quantum automata quantum information theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ambainis, A., Freivalds, R.: 1-way quantum finite automata: strengths, weaknesses and generalizations. In: Proc. 39th Symposium on Foundations of Computer Science, pp. 332–342 (1998)Google Scholar
  2. 2.
    Benioff, P.: Quantum mechanical Hamiltonian models of Turing machines. J. Stat. Phys. 29, 515–546 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bertoni, A., Carpentieri, M.: Regular languages accepted by quantum automata. Information and Computation 165, 174–182 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bertoni, A., Carpentieri, M.: Analogies and differences between quantum and stochastic automata. Theoretical Computer Science 262, 69–81 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bertoni, A., Mereghetti, C., Palano, B.: Quantum computing: 1-way quantum automata. In: Ésik, Z., Fülöp, Z. (eds.) DLT 2003. LNCS, vol. 2710, Springer, Heidelberg (2003) (to be published)CrossRefGoogle Scholar
  6. 6.
    Bertoni, A., Mereghetti, C., Palano, B.: Golomb rulers and difference sets for succinct quantum automata. Int. J. Found. Comp. Sci. (2003) (to be published)Google Scholar
  7. 7.
    Brodsky, A., Pippenger, N.: Characterizations of 1-way quantum finite automata. Technical Report TR-99-03, Department of Computer Science, University of British Columbia (2000)Google Scholar
  8. 8.
    Bertoni, A., Torelli, M.: Elementi di matematica combinatoria. ISEDI (1977) (in Italian)Google Scholar
  9. 9.
    Bernstein, E., Vazirani, U.: Quantum complexity theory. SIAM J. Comput. 26, 1411–1473 (1997); A preliminary version appeared in Proc. 25th ACM Symp. On Theory of Computation, pp. 11–20 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Deutsch, D.: Quantum theory, the Church-Turing principle and the universal quantum computer. Proc. Roy. Soc. London Ser. A 400, 97–117 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Feynman, R.: Simulating physics with computers. Int. J. Theoretical Physics 21, 467–488 (1982)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Golovkins, M., Kravtsev, M.: Probabilistic Reversible Automata and Quantum Automata. In: Ibarra, O.H., Zhang, L. (eds.) COCOON 2002. LNCS, vol. 2387, pp. 574–583. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Grover, L.: A fast quantum mechanical algorithm for database search. In: Proc. 28th ACM Symposium on Theory of Computing, pp. 212–219 (1996)Google Scholar
  14. 14.
    Gruska, J.: Quantum Computing. McGraw-Hill, New York (1999)Google Scholar
  15. 15.
    Gruska, J.: Descriptional complexity issues in quantum computing. J. Automata, Languages and Combinatorics 5, 191–218 (2000)zbMATHMathSciNetGoogle Scholar
  16. 16.
    Holevo, A.S.: Some estimates of the information transmitted by quantum communication channels. Problemy Peredachi Informatsii 9, 3–11 (1973); English translation in Problems of Information Transmission 9, 177–183 (1973)zbMATHMathSciNetGoogle Scholar
  17. 17.
    Kondacs, A., Watrous, J.: On the power of quantum finite state automata. In: 38th Symposium on Foundations of Computer Science, pp. 66–75 (1997)Google Scholar
  18. 18.
    Marcus, M., Minc, H.: Introduction to Linear Algebra. The Macmillan Company, Basingstoke (1965); Reprinted by Dover (1988)zbMATHGoogle Scholar
  19. 19.
    Marcus, M., Minc, H.: A Survey of Matrix Theory and Matrix Inequalities. Prindle, Weber & Schmidt (1964); Reprinted by Dover (1992)Google Scholar
  20. 20.
    Mereghetti, C., Palano, B.: On the size of one-way quantum finite automata with periodic behaviors. Theoretical Informatics and Applications 36, 277–291 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Moore, C., Crutchfield, J.: Quantum automata and quantum grammars. Theoretical Computer Science 237, 275–306 (2000); A preliminary version of this work appears as Technical Report in 1997zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Nayak, A.: Optimal lower bounds for quantum automata and random access codes. In: Proc. 40th Symposium on Foundations of Computer Science. pp. 369–376 (1999)Google Scholar
  23. 23.
    Shor, P.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Journal on Computing 26, 1484–1509 (1997); A preliminary version appeared in Proc. 35th IEEE Symp. on Foundations of Computer Science, pp. 20–22 (1994)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Alberto Bertoni
    • 1
  • Carlo Mereghetti
    • 1
  • Beatrice Palano
    • 1
  1. 1.Dipartimento di Scienze dell’InformazioneUniversità degli Studi di MilanoMilanoItaly

Personalised recommendations