Advertisement

An Approximation Algorithm for the Minimum Weight Vertex-Connectivity Problem in Complete Graphs with Sharpened Triangle Inequality

  • Alessandro Ferrante
  • Mimmo Parente
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2841)

Abstract

Consider a complete graph G with the edge weights satisfying the β-sharpened triangle inequality: weight(u,v) ≤ β (weight(u,x) + weight(x,v) ), for 1/2 ≤ β < 1. We study the NP-hard problem of finding a minimum weight spanning subgraph of G which is k-vertex-connected, k≥ 2, and give a detailed analysis of an approximation quadratic-time algorithm whose performance ratio is \(\frac{\beta}{1 - \beta}\).

The algorithm is derived from the one presented by Böckenhauer et al. in [3] for the k-edge connectivity problem on graphs satisfying the β-sharpened triangle inequality.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Auletta, V., Dinitz, Y., Nutov, Z., Parente, M.: A 2 Approximation Algorithms for Finding an Optimum 3 Vertex Connected Spanning Subgraph. J. of Algorithms 32, 21–30 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Böckenauer, H.-J., Bongartz, D., Hromkovič, J., Klasing, R., Proietti, G., Seibert, S., Unger, W.: On the hardness of constructing minimal 2-connected spanning subgraphs in complete graphs with sharpened triangle inequality. In: Agrawal, M., Seth, A.K. (eds.) FSTTCS 2002. LNCS, vol. 2556, pp. 59–70. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Böckenauer, H.-J., Bongartz, D., Hromkovič, J., Klasing, R., Proietti, G., Seibert, S., Unger, W.: On k-Edge-Connectivity Problems with Sharpened Triangle Inequality. To appear in Proc. of CIAC 2003. LNCS series (2003)Google Scholar
  4. 4.
    Böckenauer, H.-J., Hromkovič, J., Klasing, R., Seibert, S., Unger, W.: Approximation Algorithms for the TSP with Sharpened Triangle Inequality. Information Processing Letters 75, 133–138 (2000)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Böckenauer, H.-J., Hromkovič, J., Klasing, R., Seibert, S., Unger, W.: An Improved Lower Bound on the Approximability Algorithms for the TSP with Sharpened Triangle Inequality. In: Reichel, H., Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 382–394. Springer, Heidelberg (2000)Google Scholar
  6. 6.
    Czumaj, A., Lingas, A.: On Approximability of the minimum-cost k-connected spanning subgraph problem. In: Proc. of SODA 1999, pp. 281–290 (1999)Google Scholar
  7. 7.
    Fernandes, C.G.: A Better Approximation Ratio for the Minimum Size k-Edge- Connected Spanning Subgraph Problem. J. of Algorithms 28(1), 105–124 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Garey, M.R., Johnson, D.S.: Computers and Intractability. W.H. Freeman and Company, New York (1979)zbMATHGoogle Scholar
  9. 9.
    Khuller, S., Vishkin, U.: Biconnectivity approximation and graph carvings. Journal of the ACM 41, 214–235 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Penn, M., Shasha-Krupnik, H.: Improved approximation Algorithms for weighted 2 and 3-vertex connectivity augmentation. J. of Algorithms 22, 187–196 (1997)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Alessandro Ferrante
    • 1
  • Mimmo Parente
    • 1
  1. 1.Dipartimento di Informatica ed ApplicazioniUniversità degli Studi di SalernoBaronissiItalia

Personalised recommendations