Advertisement

Extreme Nash Equilibria

  • Martin Gairing
  • Thomas Lücking
  • Marios Mavronicolas
  • Burkhard Monien
  • Paul Spirakis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2841)

Abstract

We study the combinatorial structure and computational complexity of extreme Nash equilibria, ones that maximize or minimize a certain objective function, in the context of a selfish routing game. Specifically, we assume a collection of nusers, each employing a mixed strategy, which is a probability distribution over m parallel links, to control the routing of its own assigned traffic. In a Nash equilibrium, each user routes its traffic on links that minimize its expected latency cost.

Our structural results provide substantial evidence for the Fully Mixed Nash Equilibrium Conjecture, which states that the worst Nash equilibrium is the fully mixed Nash equilibrium, where each user chooses each link with positive probability. Specifically, we prove that the Fully Mixed Nash Equilibrium Conjecture is valid for pure Nash equilibria and that under a certain condition, the social cost of any Nash equilibrium is within a factor of 6 + ε, of that of the fully mixed Nash equilibrium, assuming that link capacities are identical.

Our complexity results include hardness, approximability and inapproximability ones. Here we show, that for identical link capacities and under a certain condition, there is a randomized, polynomial-time algorithm to approximate the worst social cost within a factor arbitrarily close to 6 + ε. Furthermore, we prove that for any arbitrary integer k > 0, it is \(\mathcal{NP}\)-hard to decide whether or not any given allocation of users to links can be transformed into a pure Nash equilibrium using at most k selfish steps. Assuming identical link capacities, we give a polynomial-time approximation scheme (PTAS) to approximate the best social cost over all pure Nash equilibria. Finally we prove, that it is \(\mathcal{NP}\)-hard to approximate the worst social cost within a multiplicative factor 2 - \(\frac{\rm 2}{m+1} - \epsilon\). The quantity 2 - \(\frac{\rm 2}{m+1}\) is the tight upper bound on the ratio of the worst social cost and the optimal cost in the model of identical capacities.

Keywords

Nash Equilibrium Problem Instance Social Cost Pure Strategy Link Capacity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brucker, P., Hurink, J., Werner, F.: Improving Local Search Heuristics for Some Scheduling Problems. Part II. Discrete Applied Mathematics 72(1-2), 47–69 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Czumaj, A., Vöcking, B.: Tight Bounds forWorst-Case Equilibria. In: Proceedings of the 13th Annual ACM Symposium on Discrete Algorithms, January 2002, pp. 413–420 (2002)Google Scholar
  3. 3.
    Deng, X., Papadimitriou, C., Safra, S.: On the Complexity of Equilibri. In: Proceedings of the 34th Annual ACM Symposium on Theory of Computing, May 2002, pp. 67–71 (2002)Google Scholar
  4. 4.
    Feldmann, R., Gairing, M., Lücking, T., Monien, B., Rode, M.: Nashification and the Coordination Ratio for a Selfish Routing Game. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 514–526. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Finn, G., Horowitz, E.: A linear time approximation algorithm for multiprocessor scheduling. BIT 19, 312–320 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Fotakis, D., Kontogiannis, S., Koutsoupias, E., Mavronicolas, M., Spirakis, P.: The Structure and Complexity of Nash Equilibria for a Selfish Routing Game. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 123–134. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Garey, M.R., Johnson, D.S.: Complexity Results for Multiprocessor Scheduling Under Resoiurce Constraints. SIAM Journal on Computing 4, 397–411 (1975)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Garey, M.R., Johnson, D.S.: Computers and intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Company, New York (1979)zbMATHGoogle Scholar
  9. 9.
    Gonnet, G.H.: Expected Length of the Longest Probe Sequence in Hash Code Searching. Journal of the ACM 28(2), 289–304 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Hochbaum, D.S., Shmoys, D.: Using Dual Approximation Algorithms for Scheduling Problems: Theoretical and Practical Results. Journal of the ACM 34(1), 144–162 (1987)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Horowitz, E., Sahni, S.: Exact and Approximate Algorithms for Scheduling Non-Identical Processors. Journal of the ACM 23(2), 317–327 (1976)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Karp, R.M.: Reducibility among Combinatorial Problems. In: Miller, R.E., Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum Press, New York (1972)Google Scholar
  13. 13.
    Kolchin, V.F., Chistiakov, V.P., Sevastianov, B.A.: Random Allocations. V. H. Winston, New York (1978)Google Scholar
  14. 14.
    Koutsoupias, E., Mavronicolas, M., Spirakis, P.: Approximate Equilibria and Ball Fusion. In: Proceedings of the 9th International Colloquium on Structural Information and Communication Complexity, Andros, Greece (June 2002) (Accepted to Theory of Computing Systems); Earlier version appeared as A Tight Bound on Coordination Ratio, Technical Report 0100229, Department of Computer Science, University of California at Los Angeles (April 2001)Google Scholar
  15. 15.
    Koutsoupias, E., Papadimitriou, C.H.: Worst-case Equilibria. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  16. 16.
    Lücking, T., Mavronicolas, M., Monien, B., Rode, M., Spirakis, P., Vrto, I.: Which is theWorst-case Nash Equilibrium? In: 26th International Symposium on Mathematical Foundations of Computer Science (August 2003) (to appear)Google Scholar
  17. 17.
    Marshall, A., Olkin, I.: Theory of Majorization and Its Applications. Academic Press, Orlando (1979)zbMATHGoogle Scholar
  18. 18.
    Mavronicolas, M., Spirakis, P.: The Price of Selfish Routing. In: Proceedings of the 33rd Annual ACM Symposium on Theory of Computing, July 2001, pp. 510–519 (2001)Google Scholar
  19. 19.
    McDiarmid, C.: “Concentration. In: Habib, M., McDiarmidt, C., Ramires-Alfonsin, J., Reed, B. (eds.) Probabilistic Methods for Algorithmic Discrete Mathematics, vol. ch. 9, Springer, Heidelberg (1998)Google Scholar
  20. 20.
    Moulin, H., Vial, L.: Strategically Zero-Sum Games: The Class of Games whose Completely Mixed Equilibria Cannot be Improved Upon. International Journal of Game Theory 7(3/4), 201–221 (1978)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Nash, J.F.: Equilibrium Points in N-Person Games. Proceedings of the National Academy of Sciences 36, 48–49 (1950)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Nash, J.F.: Non-cooperative Games. Annals of Mathematics 54(2), 286–295 (1951)CrossRefMathSciNetGoogle Scholar
  23. 23.
    Osborne, M.J., Rubinstein, A.: A Course in Game Theory. The MIT Press, Cambridge (1994)zbMATHGoogle Scholar
  24. 24.
    Papadimitriou, C.H.: Algorithms, Games and the Internet. In: Proceedings of the 33rd Annual ACM Symposium on Theory of Computing, July 2001, pp. 749–753 (2001)Google Scholar
  25. 25.
    Raghavan, T.E.S.: Completely Mixed Strategies in Bimatrix Games. Journal of London Mathematical Society 2(2), 709–712 (1970)zbMATHMathSciNetGoogle Scholar
  26. 26.
    Ross, S.M.: Stochastic Processes, 2nd edn. John Wiley & Sons, Inc., Chichester (1996)zbMATHGoogle Scholar
  27. 27.
    Schuurman, P., Vredeveld, T.: Performance Guarantees of Load Search for Multiprocessor Scheduling. In: Proceedings of the 8th Conference on Integer Programming and Combinatorial Optimization, June 2001, pp. 370–382 (2001)Google Scholar
  28. 28.
    Shaked, M., Shanthikumar, J.G.: Stochastic Orders and Their Applications. Academic Press, San Diego (1994)zbMATHGoogle Scholar
  29. 29.
    Vetta, A.: Nash Equilibria in Competitive Societies, with Applications to Facility Location, Traffic Routing and Auctions. In: Proceedings of the 43rd Annual IEEE Symposium on Foundations of Computer Science, October 2002, pp. 416–425 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Martin Gairing
    • 1
  • Thomas Lücking
    • 1
  • Marios Mavronicolas
    • 2
  • Burkhard Monien
    • 1
  • Paul Spirakis
    • 3
    • 4
  1. 1.Faculty of Computer Science, Electrical Engineering and MathematicsUniversity of PaderbornPaderbornGermany
  2. 2.Department of Computer ScienceUniversity of CyprusNicosiaCyprus
  3. 3.Computer Technology InstitutePatrasGreece
  4. 4.Department of Computer Engineering and InformaticsUniversity of Patras, RionPatrasGreece

Personalised recommendations