Skip to main content

High Degree Vertices and Eigenvalues in the Preferential Attachment Graph

  • Conference paper
Approximation, Randomization, and Combinatorial Optimization.. Algorithms and Techniques (RANDOM 2003, APPROX 2003)

Abstract

The preferential attachment graph is a random graph formed by adding a new vertex at each time step, with a single edge which points to a vertex selected at random with probability proportional to its degree. Every m steps the most recently added m vertices are contracted into a single vertex, so at time t there are roughly t/m vertices and exactly t edges. This process yields a graph which has been proposed as a simple model of the world wide web [BA99]. For any constant k, let Δ1 ≥ Δ2 ≥ ⋯ ≥ Δ k be the degrees of the k highest degree vertices. We show that at time t, for any function f with f(t)→ ∞ as t→ ∞, \(\frac{t^{1/2}}{f(t)} \leq \Delta_1 \leq t^{1/2}f(t),\) and for i = 2,..., k, \(\frac{t^{1/2}}{f(t)} \leq \Delta_i \leq \Delta_{i-1} -- \frac{t^{1/2}}{f(t)},\) with high probability (whp). We use this to show that at time t the largest k eigenvalues of the adjacency matrix of this graph have λ k = (1± o(1))Δ k 1/2 whp.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albert, R., Barabási, A., Jeong, H.: Diameter of the world wide web. Nature 401, 103–131 (1999)

    Google Scholar 

  2. Aiello, W., Chung, F.R.K., Lu, L.: A random graph model for massive graphs. In: Proc. of the 32nd Annual ACM Symposium on the Theory of Computing, pp. 171–180 (2000)

    Google Scholar 

  3. Barabási, A., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  4. Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R., Tomkins, A., Wiener, J.: Graph structure in the web. In: Proc. of the 9th Intl. World Wide Web Conference, pp. 309–320 (2000)

    Google Scholar 

  5. Buckley, G., Osthus, D.: Popularity based random graph models leading to a scale-free degree distribution (2001)

    Google Scholar 

  6. Bollobás, B., Riordan, O.: The diameter of a scale-free random graph (to appear)

    Google Scholar 

  7. Bollobás, B., Riordan, O.: Mathematical results on scale-free random graphs. In: Handbook of Graphs and Networks, Wiley-VCH, Berlin (2002)

    Google Scholar 

  8. Bollobás, B., Riordan, O., Spencer, J., Tusanády, G.: The degree sequence of a scale-free random graph process. Random Structures and Algorithms 18, 279–290 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cooper, C., Frieze, A.M.: A general model of undirected Web graphs. In: Proc. of ESA, pp. 500–511 (2001)

    Google Scholar 

  10. Chung, F.R.K., Lu, L., Vu, V.: Eigenvalues of random power law graphs (to appear)

    Google Scholar 

  11. Drinea, E., Enachescu, M., Mitzenmacher, M.: Variations on random graph models for the web. Technical report, Harvard University (2001)

    Google Scholar 

  12. Erdös, P., Rényi, A.: On random graphs I. Publicationes Mathematicae Debrecen 6, 290–297 (1959)

    MATH  MathSciNet  Google Scholar 

  13. Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships of the internet topology. In: SIGCOMM, pp. 251–262 (1999)

    Google Scholar 

  14. Hayes, B.: Graph theory in practice: Part II. American Scientist 88, 104–109 (2000)

    Google Scholar 

  15. Kleinberg, J.M., Kumar, R., Raghavan, P., Rajagopalan, S., Tomkins, A.S.: The Web as a graph: Measurements, models and methods. In: Asano, T., Imai, H., Lee, D.T., Nakano, S.-i., Tokuyama, T. (eds.) COCOON 1999. LNCS, vol. 1627, p. 1. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  16. Kumar, R., Raghavan, P., Rajagopalan, S., Sivakumar, D., Tomkins, A., Upfal, E.: Stochastic models for the web graph. In: FOCS: IEEE Symposium on Foundations of Computer Science, FOCS (2000)

    Google Scholar 

  17. Kumar, R., Raghavan, P., Rajagopalan, S., Sivakumar, D., Tomkins, A., Upfal, E.: The Web as a graph. In: Proc. 19th ACM SIGACT SIGMOD-AIGART Symp. Principles of Database Systems, PODS, pp. 1–10. ACM Press, New York (2000)

    Google Scholar 

  18. Kumar, R., Raghavan, P., Rajagopalan, S., Tomkins, A.: Trawling the Web for emerging cyber-communities. Computer Networks (Amsterdam, Netherlands: 1999) 31(11-16), 1481–1493 (1999)

    Google Scholar 

  19. Mitzenmacher, M.: A brief history of generative models for power law and lognormal distributions. In: Proc. of the 39th Annual Allerton Conf. on Communication, Control, and Computing, pp. 182–191 (2001)

    Google Scholar 

  20. Mihail, M., Papadimitriou, C.H.: On the eigenvalue power law. In: Proc. of 6th Intl. Workshop on Randomization and Approximation Techniques, pp. 254–262 (2002)

    Google Scholar 

  21. Simon, H.A.: On a class of skew distribution functions. Biometrika 42(3/4), 425–440 (1955)

    Article  MATH  MathSciNet  Google Scholar 

  22. Strang, G.: Linear algebra and its applications. Hardcourt Brace Jovanovich Publishing, New York (1988)

    Google Scholar 

  23. Watts, D.J.: Small Worlds: The Dynamics of Networks between Order and Randomness. Princeton University Press, Princeton (1988)

    Google Scholar 

  24. Yule, G.: A mathematical theory of evolution based on the conclusions of Dr. J.C. Willis. Philosophical Transactions of the Royal Society of London (Series B) 213, 21–87 (1925)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Flaxman, A., Frieze, A., Fenner, T. (2003). High Degree Vertices and Eigenvalues in the Preferential Attachment Graph. In: Arora, S., Jansen, K., Rolim, J.D.P., Sahai, A. (eds) Approximation, Randomization, and Combinatorial Optimization.. Algorithms and Techniques. RANDOM APPROX 2003 2003. Lecture Notes in Computer Science, vol 2764. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45198-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45198-3_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40770-6

  • Online ISBN: 978-3-540-45198-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics