Skip to main content

The Lovász Number of Random Graphs

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2764))

Abstract

We study the Lovász number ϑ along with two further SDP relaxations ϑ 1/2, ϑ 2 of the independence number and the corresponding relaxations \(\bar\vartheta\), \(\bar\vartheta_{1/2}\), \(\bar\vartheta_2\) of the chromatic number on random graphs G n, p . We prove that \(\bar\vartheta,\bar\vartheta_{1/2},\bar\vartheta_2(G_{n,p})\) in the case p<n  − 1/2 −  ε are concentrated in intervals of constant length. Moreover, we estimate the probable value of \(\vartheta,\bar\vartheta(G_{n,p})\) etc. for essentially the entire range of edge probabilities p. As applications, we give improved algorithms for approximating α(G n, p ) and for deciding k-colorability in polynomial expected time.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alon, N., Kahale, N.: A spectral technique for coloring random 3-colorable graphs. SIAM J. Comput. 26, 1733–1748 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alon, N., Krivelevich, M.: The concentration of the chromatic number of random graphs. Combinatorica 17, 303–313

    Google Scholar 

  3. Charikar, M.: On semidefinite programming relaxations for graph coloring and vertex cover. In: Proc. 13th SODA, pp. 616–620 (2002)

    Google Scholar 

  4. Coja-Oghlan, A., Taraz, A.: Exact and approximative algorithms for colouring G(n, p) (preprint), available from http://www.informatik.hu-berlin.de/~coja/ ; A preliminary version has appeard in Proc. 20th STACS (2003), pp. 487–498 (2003)

  5. Coja-Oghlan, A.: Finding large independent sets in polynomial expected time. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 511–522. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  6. Coja-Oghlan, A., Moore, C., Sanwalani, V.: MAX k-CUT and approximating the chromatic number of random graphs, available from http://www.informatik.huberlin.de/~coja/ ; An extended abstract version has appeared in Proc. ICALP 2003 (2003)

  7. Feige, U.: Randomized graph products, chromatic numbers, and the Lovász theta function. Combinatorica 17(1), 79–90

    Google Scholar 

  8. Feige, U., Kilian, J.: Heuristics for semirandom graph problems. J. Comput. and System Sci. 63, 639–671 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Feige, U., Kilian, J.: Zero knowledge and the chromatic number. In: Proc. 11th IEEE Conf. Comput. Complexity, pp. 278–287 (1996)

    Google Scholar 

  10. Feige, U., Ofek, E.: Spectral techniques applied to sparse random graphs, report MCS03-01, Weizmann Institute (2003), available from http://www.wisdom.weizmann.ac.il/math/research.shtml

  11. Friedman, J., Kahn, J., Szemeredi, E.: On the second eigenvalue in random regular graphs. In: Proc. 21st STOC, pp. 587–598 (1989)

    Google Scholar 

  12. Frieze, A., McDiarmid, C.: Algorithmic theory of random graphs. Random Structures & Algorithms 10, 5–42 (1997)

    Article  MathSciNet  Google Scholar 

  13. Füredi, Z., Komloś, J.: The eigenvalues of random symmetric matrices. Combinatorica 1, 233–241 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  14. Goemans, M.X., Kleinberg, J.: The Lovasz theta function and a semidefinite programming relaxation of vertex cover. SIAM J. on Discrete Math. 11, 1–48 (1998)

    Article  MathSciNet  Google Scholar 

  15. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and satisfyability problems using semidefinite programming. J. ACM 42, 1115–1145 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  16. Grötschel, M., Lovász, L., Schrijver, A.: Geometric algorithms and combinatorial optimization. Springer, Heidelberg (1988)

    Google Scholar 

  17. Håstad, J.: Clique is hard to approximate within n1 − ε. In: Proc. 37th FOCS, pp. 627–636 (1996)

    Google Scholar 

  18. Janson, S., Łuczak, T., Ruciński, A.: Random Graphs. Wiley, Chichester (2000)

    MATH  Google Scholar 

  19. Juhász, F.: The asymptotic behaviour of Lovász ϑ function for random graphs. Combinatorica 2, 269–270 (1982)

    Article  Google Scholar 

  20. Karger, D., Motwani, R., Sudan, M.: Approximate graph coloring by semidefinite programming. J. ACM 45, 246–265 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  21. Knuth, D.: The sandwich theorem. Electron. J. Combin. 1 (1994)

    Google Scholar 

  22. Krivelevich, M.: Deciding k-colorability in expected polynomial time. Information Processing Letters 81, 1–6 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  23. Krivelevich, M., Vu, V.H.: Approximating the independence number and the chromatic number in expected polynomial time. J. of Combinatorial Optimization 6, 143–155 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  24. Lawler, E.L.: A note on the complexity of the chromatic number problem. Information Processing Letters 5, 66–67 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  25. Łuczak, T.: A note on the sharp concentration of the chromatic number of random graphs. Combinatorica 11, 45–54 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  26. Shamir, E., Spencer, J.: Sharp concentration of the chromatic number of random graphs G n,p . Combinatorica 7, 121–129 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  27. Szegedy, M.: A note on the θ number of Lovász and the generalized Delsarte bound. In: Proc. 35th FOCS, pp. 36–39 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Coja-Oghlan, A. (2003). The Lovász Number of Random Graphs. In: Arora, S., Jansen, K., Rolim, J.D.P., Sahai, A. (eds) Approximation, Randomization, and Combinatorial Optimization.. Algorithms and Techniques. RANDOM APPROX 2003 2003. Lecture Notes in Computer Science, vol 2764. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45198-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45198-3_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40770-6

  • Online ISBN: 978-3-540-45198-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics