Skip to main content

An Algebraic Approach to Multi-sorted Constraints

  • Conference paper
Principles and Practice of Constraint Programming – CP 2003 (CP 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2833))

Abstract

Most previous theoretical study of the complexity of the constraint satisfaction problem has considered a simplified version of the problem in which all variables have the same domain. We show here that this apparently minor simplification can in fact change the complexity of the problem, and hence mask the existence of certain tractable constraint types. In this paper we describe a new algebraic framework which allows us to deal more precisely with problems where different variables may have different domains. Using this new framework we are able to identify new tractable classes of constraints, by combining algorithms devised for the simplified, single domain, problem. We also systematically develop an algebraic structural theory for the general problem, and show that this theory can be used to generalise earlier results about the complexity of certain constraint types.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bulatov, A.A.: A dichotomy theorem for constraints on a three-element set. In: Proceedings 43rd IEEE Symposium on Foundations of Computer Science, FOCS 2002, Vancouver, Canada, November 2002, pp. 649–658 (2002)

    Google Scholar 

  2. Bulatov, A.A.: Mal’tsev constraints are tractable. Technical Report PRG-RR-02- 05, Computing Laboratory, University of Oxford, Oxford, UK (2002)

    Google Scholar 

  3. Bulatov, A.A., Jeavons, P.G.: Tractable constraints closed under a binary operation. Technical Report PRG-TR-12-00, Computing Laboratory, University of Oxford, Oxford, UK (2000)

    Google Scholar 

  4. Bulatov, A.A., Jeavons, P.G.: An algebraic approach to multi-sorted constraints. Technical Report PRG-RR-01-18, Computing Laboratory, University of Oxford, Oxford, UK (2001)

    Google Scholar 

  5. Bulatov, A.A., Jeavons, P.G., Krokhin, A.A.: The complexity of maximal constraint languages. In: Proceedings of the 33rd Annual ACM Simposium on Theory of Computing, Hersonissos, Crete, Greece, pp. 667–674. ACM Press, New York (2001)

    Chapter  Google Scholar 

  6. Bulatov, A.A., Krokhin, A.A., Jeavons, P.G.: Constraint satisfaction problems and finite algebras. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 272–282. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  7. Cohen, D.A., Jeavons, P.G., Jonsson, P., Koubarakis, M.: Building tractable disjunctive constraints. Journal of the ACM 47, 826–853 (2000)

    Article  MathSciNet  Google Scholar 

  8. Cooper, M.C.: An optimal k-consistency algorithm. Art. Intell. 41, 89–95 (1989)

    Article  MATH  Google Scholar 

  9. Cooper, M.C., Cohen, D.A., Jeavons, P.G.: Characterising tractable constraints. Artificial Intelligence 65, 347–361 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dalmau, V.: A new tractable class of constraint satisfaction problems. In: Proc. 6th International Symposium on Artificial Intelligence and Mathematics (2000)

    Google Scholar 

  11. Dalmau, V., Pearson, J.: Set functions and width 1 problems. In: Jaffar, J. (ed.) CP 1999. LNCS, vol. 1713, pp. 159–173. Springer, Heidelberg (1999)

    Google Scholar 

  12. Feder, T.: Classification of homomorphisms to oriented cycles and of k-partite satisfiability. SIAM J. of Discrete Math. 14(4), 471–480 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Feder, T., Vardi, M.Y.: The computational structure of monotone monadic SNP and constraint satisfaction: A study through datalog and group theory. SIAM Journal of Computing 28, 57–104 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  14. Garey, M., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco (1979)

    MATH  Google Scholar 

  15. Gault, R.: Polyanna Technical Manual (version 1.00). Technical Report PRG-RR- 01-20, Computing Laboratory, University of Oxford, Oxford, UK (2001)

    Google Scholar 

  16. Hobby, D., McKenzie, R.N.: The Structure of Finite Algebras. Contemporary Mathematics. vol. 76. American Mathematical Society, Providence (1988)

    Google Scholar 

  17. Jeavons, P.G.: On the algebraic structure of combinatorial problems. Theoretical. Computer Science 200, 185–204 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  18. Jeavons, P.G., Cohen, D.A., Cooper, M.C.: Constraints, consistency and closure. Artificial Intelligence 101(1-2), 251–265 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  19. Jeavons, P.G., Cohen, D.A., Gyssens, M.: Closure properties of constraints. Journal of the ACM 44, 527–548 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kirousis, L.: Fast parallel constraint satisfaction. Artificial Intelligence 64, 147–160 (1993)

    Article  MATH  Google Scholar 

  21. Kolaitis, P.G., Vardi, M.Y.: Conjunctive-query containment and constraint satisfaction. J. Comput. Syst. Sci. 61, 302–332 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  22. Mackworth, A.K.: Consistency in networks of relations. Artificial Intelligence 8, 99–118 (1977)

    Article  MATH  Google Scholar 

  23. McKenzie, R.N., McNulty, G.F., Taylor, W.F.: Algebras, Lattices and Varieties, vol. I. Wadsworth and Brooks, California (1987)

    Google Scholar 

  24. Montanari, U.: Networks of constraints: Fundamental properties and applications to picture processing. Information Sciences 7, 95–132 (1974)

    Article  MathSciNet  Google Scholar 

  25. Pöschel, R., Kalužnin, L.A.: Funktionen- und Relationenalgebren. DVW, Berlin (1979)

    Google Scholar 

  26. Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings 10th ACM Symposium on Theory of Computing (STOC 1978), pp. 216–226 (1978)

    Google Scholar 

  27. van Beek, P., Dechter, R.: On the minimality and decomposability of row-convex constraint networks. Journal of the ACM 42, 543–561 (1995)

    Article  MATH  Google Scholar 

  28. van Hentenryck, P., Deville, Y., Teng, C.-M.: A generic arc-consistency algorithm and its specializations. Artificial Intelligence 57, 291–321 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  29. Vardi, M.Y.: Constraint satisfaction and database theory: a tutorial. In: Proceedings of 19th ACM Symposium on Priciples of Database Systems (PODS 2000) (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bulatov, A.A., Jeavons, P. (2003). An Algebraic Approach to Multi-sorted Constraints. In: Rossi, F. (eds) Principles and Practice of Constraint Programming – CP 2003. CP 2003. Lecture Notes in Computer Science, vol 2833. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45193-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45193-8_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20202-8

  • Online ISBN: 978-3-540-45193-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics