Watermark Security via Secret Wavelet Packet Subband Structures

  • Werner Dietl
  • Andreas Uhl
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2828)


Wavelet packet decompositions generalize the classical pyramidal wavelet structure. We use the vast amount of possible wavelet packet decomposition structures to create a secret wavelet domain and discuss how this idea can be used to improve the security of watermarking schemes. Two methods to create random wavelet packet trees are discussed and analyzed. The security against unauthorized detection is investigated. Using JPEG and JPEG2000 compression we assess the normalized correlation and Peak Signal to Noise Ratio (PSNR) behavior of the watermarks. We conclude that the proposed systems show improved robustness against compression and provide around 21046 possible keys. The security against unauthorized detection is greatly improved.


Wavelet Packet JPEG2000 Compression Tree Decomposition Digital Watermark Tree Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Katzenbeisser, S., Petitcolas, F.A.P.: Information Hiding Techniques for Steganography and Digital Watermarking. Artech House (1999)Google Scholar
  2. 2.
    Dittmann, J. (ed.): Digitale Wasserzeichen: Grundlagen, Verfahren, Anwendungsgebiete. Springer, Heidelberg (2000)Google Scholar
  3. 3.
    Johnson, N.F., Duric, Z., Jajodia, S.: Information Hiding: Steganography and Watermarking - Attacks and Countermeasures. Kluwer Academic Publishers, Dordrecht (2000)Google Scholar
  4. 4.
    Cox, I.J., Miller, M.L., Bloom, J.A.: Digital Watermarking. Morgan Kaufmann, San Francisco (2002)Google Scholar
  5. 5.
    Eggers, J.J., Girod, B.: Informed Watermarking. Kluwer Academic Publishers, Dordrecht (2002)CrossRefGoogle Scholar
  6. 6.
    Daubechies, I.: Ten Lectures on Wavelets. CBMS-NSF Series in Applied Mathematics, vol. 61. SIAM Press, Philadelphia (1992)CrossRefzbMATHGoogle Scholar
  7. 7.
    Wickerhauser, M.: Adapted wavelet analysis from theory to software. A.K. Peters, Wellesley (1994)zbMATHGoogle Scholar
  8. 8.
    Mallat, S.: A wavelet tour of signal processing. Academic Press, London (1997)zbMATHGoogle Scholar
  9. 9.
    ISO/IEC JPEG committee: JPEG 2000 image coding system — ISO/IEC 15444- 1:2000 (2000)Google Scholar
  10. 10.
    Taubman, D., Marcellin, M.: JPEG2000 — Image Compression Fundamentals, Standards and Practice. Kluwer Academic Publishers, Dordrecht (2002)CrossRefGoogle Scholar
  11. 11.
    Meerwald, P., Uhl, A.: A survey of wavelet-domain watermarking algorithms. In: Wong, P.W., Delp, E.J. (eds.) Proceedings of SPIE, Electronic Imaging, Security and Watermarking of Multimedia Contents III, San Jose, CA, USA, vol. 4314. SPIE, Bellingham (2001)Google Scholar
  12. 12.
    Wang, Y., Doherty, J.F., Dyck, R.E.V.: A wavelet-based watermarking algorithm for copyright protection of digital images. IEEE Transactions on Image Processing 11, 77–88 (2002)CrossRefGoogle Scholar
  13. 13.
    Tsai, M.J., Yu, K.Y., Chen, Y.Z.: Wavelet packet and adaptive spatial transformation of watemark for digital image authentication. In: Proceedings of the IEEE International Conference on Image Processing ICIP 2000, Vancouver, Canada (2000)Google Scholar
  14. 14.
    Levy-Vehel, J., Manoury, A.: Wavelet packet based digital watermarking. In: Proceedings of the 15th International Conference on Pattern Recognition, Barcelona, Spain (2000)Google Scholar
  15. 15.
    Wang, H.J., Kuo, C.C.J.: Watermark design for embedded wavelet image codec. In: Proceedings of the SPIE’s 43rd Annual Meeting, Applications of Digital Image Processing, San Diego, CA, USA, vol. 3460, pp. 388–398 (1998)Google Scholar
  16. 16.
    Kundur, D.: Improved digital watermarking through diversity and attack characterization. In: Proceedings of the ACM Workshop on Multimedia Security 1999, Orlando, FL, USA, pp. 53–58 (1999)Google Scholar
  17. 17.
    Fridrich, J., Baldoza, A.C., Simard, R.J.: Robust digital watermarking based on key-dependent basis functions. In: Aucsmith, D. (ed.) IH 1998. LNCS, vol. 1525, pp. 143–157. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  18. 18.
    Kalker, T., Linnartz, J.P., Depovere, G., Maes, M.: On the reliability of detecting electronic watermarks in digital images. In: Proceedings of the 9th European Signal Processing Conference EUSIPCO 1998, Island of Rhodes, Greece, pp. 13–16 (1998)Google Scholar
  19. 19.
    Fridrich, J.: Key-dependent random image transforms and their applications in image watermarking. In: Proceedings of the 1999 International Conference on Imaging Science, Systems, and Technology, CISST 1999, Las Vegas, NV, USA, pp. 237–243 (1999)Google Scholar
  20. 20.
    Meerwald, P., Uhl, A.: Watermark security via wavelet filter parametrization. In: Proceedings of the IEEE International Conference on Image Processing (ICIP 2001), IEEE Signal Processing Society, Thessaloniki, Greece, vol. 3, pp. 1027–1030 (2001)Google Scholar
  21. 21.
    Dietl, W., Meerwald, P., Uhl, A.: Key-dependent pyramidal wavelet domains for secure watermark embedding. In: Delp, E.J., Wong, P.W. (eds.) Proceedings of SPIE, Electronic Imaging, Security and Watermarking of Multimedia Contents V, Santa Clara, CA, USA, vol. 5020, SPIE, Bellingham (2003)Google Scholar
  22. 22.
    Wang, H.J., Bao, Y.L., Kuo, C.C.J., Chen, H.: Multi-threshold wavelet codec (MTWC). Technical report, Derpartment of Electrical Engineering, University of Southern California, Los Angeles, CA, USA, Geneva, Switzerland (1998)Google Scholar
  23. 23.
    Wang, H.J., Kuo, C.C.J.: High fidelity image compression with multithreshold wavelet coding (MTWC). In: SPIE’s Annual meeting - Application of Digital Image Processing XX, San Diego, CA, USA (1997)Google Scholar
  24. 24.
    Pommer, A., Uhl, A.: Selective encryption of wavelet packet subband structures for secure transmission of visual data. In: Dittmann, J., Fridrich, J., Wohlmacher, P. (eds.) Multimedia and Security Workshop, ACM Multimedia, Juan-les-Pins, France, pp. 67–70 (2002)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2003

Authors and Affiliations

  • Werner Dietl
    • 1
  • Andreas Uhl
    • 1
  1. 1.Dept. of Scientific ComputingUniversity of SalzburgSalzburgAustria

Personalised recommendations