Skip to main content

Random Subclass Bounds

  • Conference paper
Book cover Learning Theory and Kernel Machines

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2777))

  • 5272 Accesses

Abstract

It has been recently shown that sharp generalization bounds can be obtained when the function class from which the algorithm choo-ses its hypotheses is “small” in the sense that the Rademacher averages of this function class are small [8,9]. Seemingly based on different arguments, generalization bounds were obtained in the compression scheme [7], luckiness [13], and algorithmic luckiness [6] frameworks in which the “size” of the function class is not specified a priori.

We show that the bounds obtained in all these frameworks follow from the same general principle, namely that coordinate projections of this function subclass evaluated on random samples are “small” with high probability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bartlett, P.L., Bousquet, O., Mendelson, S.: Local Rademacher Complexities (preprint)

    Google Scholar 

  2. Cannon, A.H., Ettinger, J.M., Hush, D.R., Scovel, J.C.: Machine learning with data dependent hypothesis classes. JMLR 2, 335–358 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Floyd, S., Warmuth, M.: Sample compression, learnability, and the Vapnik- Chervonenkis dimension. Machine Learning 21(3), 269–304 (1995)

    Google Scholar 

  4. Gat, Y.: A bound concerning the generalization ability of a certain class of learning algorithms, Tech. Rep. No. 548, Univ. of California, Berkeley (March 1999)

    Google Scholar 

  5. Graepel, T., Herbrich, R., Shawe-Taylor, J.: Generalisation Error Bounds for Sparse Linear Classifiers. In: Proc. 13th Annu. Conf. on Comput. Learning Theory (2000)

    Google Scholar 

  6. Herbrich, R., Williamson, R.C.: Algorithmic luckiness. JMLR 3, 175–212 (2002)

    Article  MathSciNet  Google Scholar 

  7. Littlestone, N., Warmuth, M.: Relating Data Compression and Learnability. Univ. of California, Santa Cruz (1986) (unpublished manuscript)

    Google Scholar 

  8. Mendelson, S.: Rademacher averages and phase transitions in Glivenko-Cantelli class. IEEE Trans. on Inform. Th. 48(1), 251–263 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  9. Mendelson, S.: Improving the sample complexity using global data. IEEE Trans. on Inform. Th. 48(7), 1977–1991 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Mendelson, S.: A few notes on Statistical Learning Theory. In: Mendelson, S., Smola, A.J. (eds.) Advanced Lectures on Machine Learning. LNCS, vol. 2600, pp. 1–40. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  11. Mendelson, S., Philips, P.: On the importance of small coordinate projections. JMLR (to appear)

    Google Scholar 

  12. McDiarmid, C.: On the method of bounded differences. In: Surveys in Combinatorics. London Math. Soc. Lect. Note Series, vol. 141, pp. 148–188 (1989)

    Google Scholar 

  13. Shawe-Taylor, J., Bartlett, P.L., Williamson, R.C., Anthony, M.: Structural risk minimization over data-dependent hierarchies. IEEE Trans. on Inform. Th. 44(5), 1926–1940 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  14. Talagrand, M.: Majorizing measures: The generic chaining. Ann. Probab. 24, 1049–1103 (1996)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mendelson, S., Philips, P. (2003). Random Subclass Bounds. In: Schölkopf, B., Warmuth, M.K. (eds) Learning Theory and Kernel Machines. Lecture Notes in Computer Science(), vol 2777. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45167-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45167-9_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40720-1

  • Online ISBN: 978-3-540-45167-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics