University Course Timetabling with Soft Constraints

  • Hana Rudová
  • Keith Murray
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2740)


An extension of constraint logic programming that allows for weighted partial satisfaction of soft constraints is described and applied to the development of an automated timetabling system for Purdue University. The soft-constraint solver implemented in the proposed solution approach allows constraint propagation for hard constraints together with preference propagation for soft constraints. A new repair search algorithm is proposed to improve upon initially generated (partial) assignments of the problem variables. The model and search methods applied to the solution of the large lecture room component are presented and discussed along with the computational results.


Constraint Satisfaction Soft Constraint Hard Constraint Preference Variable Timetabling Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abdennadher, S., Marte, M.: University Course Timetabling Using Constraint Handling Rules. J. Appl. Artif. Intell. 14, 311–326 (2000)CrossRefGoogle Scholar
  2. 2.
    Aubin, J., Ferland, J.A.: A Large Scale Timetabling Problem. Comput. Oper. Res. 16, 67–77 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Banks, D., van Beek, P., Meisels, A.: A Heuristic Incremental Modeling Approach to Course timetabling. In: Proc. Artif. Intell. 1998, Canada (1998)Google Scholar
  4. 4.
    Bistarelli, S., Frühwirth, T., Martel, M., Rossi, F.: Soft Constraint Propagation and Solving in Constraint Handling Rules. In: Proc. ACM Symp. Appl. Comput. (2002)Google Scholar
  5. 5.
    Bistarelli, S., Montanari, U., Rossi, F.: Semiring-Based Constraint Solving and Optimization. J. ACM 44, 201–236 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Carlsson, M., Ottosson, G., Carlson, B.: An Open-Ended Finite Domain Constraint Solver. In: Hartel, P.H., Kuchen, H. (eds.) PLILP 1997. LNCS, vol. 1292. Springer, Heidelberg (1997)Google Scholar
  7. 7.
    Carter, M.W.: A Comprehensive Course Timetabling and Student Scheduling System at the University of Waterloo. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp. 64–82. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Carter, M.W., Laporte, G.: Recent Developments in Practical Course Timetabling. In: Burke, E.K., Carter, M. (eds.) PATAT 1997. LNCS, vol. 1408, pp. 3–19. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  9. 9.
    Dubois, D., Fargier, H., Prade, H.: Possibility Theory in Constraint Satisfaction Problems: Handling Priority, Preference and Uncertainty. Appl. Intell. 6, 287–309 (1996)CrossRefGoogle Scholar
  10. 10.
    Freuder, E.C., Wallace, R.J.: Partial Constraint Satisfaction. Artif. Intell. 58, 21–70 (1992)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Frühwirth, T.: Constraint Handling Rules. In: Podelski, A. (ed.) Constraint Programming: Basics and Trends. LNCS, vol. 910. Springer, Heidelberg (1995)Google Scholar
  12. 12.
    Galinier, P., Hao, J.-K.: Tabu Search for Maximal Constraint Satisfaction Problems. In: Smolka, G. (ed.) CP 1997. LNCS, vol. 1330, pp. 196–208. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  13. 13.
    Georget, Y., Codognet, P.: Compiling Semiring-Based Constraints with clp(FD,S). In: Maher, M.J., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520, pp. 205–219. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  14. 14.
    Goltz, H.-J., Küchler, G., Matzke, D.: Constraint-Based Timetabling for Universities. In: Proc. INAP 1998, 11th Int. Conf. on Applications of Prolog, pp. 75–80 (1998)Google Scholar
  15. 15.
    Guéret, C., Jussien, N., Boizumault, P., Prins, C.: Building University Timetables Using Constraint Logic Programming. In: Burke, E.K., Ross, P. (eds.) PATAT 1995. LNCS, vol. 1153, pp. 130–145. Springer, Heidelberg (1996)Google Scholar
  16. 16.
    Henz, M., Würtz, J.: Using Oz for College Timetabling. In: Burke, E.K., Ross, P. (eds.) PATAT 1995. LNCS, vol. 1153, pp. 162–177. Springer, Heidelberg (1996)Google Scholar
  17. 17.
    IC-Park. ECL i PS e Constraint Library Manual, Release 5.5 (2002),
  18. 18.
    Jaffar, J., Maher, M.J.: Constraint Logic Programming: a Survey. J. Logic Program. 19, 503–581 (1994)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Meseguer, P., Larrosa, J., Sánchez, M.: Lower Bounds for Non-binary Constraint Optimization Problems. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 317–331. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  20. 20.
    Mooney, E.: Tabu Search Heuristics for Resource Scheduling. Ph.D. Thesis, Purdue University (1991)Google Scholar
  21. 21.
    Le Pape, C.: Implementation of Resource Constraints in ILOG SCHEDULE: a Library for the Development of Constraint-Based Scheduling Systems. Intell. Syst. Engng. 3, 55–66 (1994)CrossRefGoogle Scholar
  22. 22.
    Robert, V., Hertz, A.: How to Decompose Constrained Course Scheduling Problems into Easier Assignment Type Subproblems. In: Burke, E.K., Ross, P. (eds.) PATAT 1995. LNCS, vol. 1153, pp. 364–373. Springer, Heidelberg (1996)Google Scholar
  23. 23.
    Rudová, H.: Constraint Satisfaction with Preferences. Ph.D. Thesis, Faculty of Informatics, Masaryk University (2001),
  24. 24.
    Rudová, H.: Soft CLP(FD). In: Haller, S., Russell, I. (eds.) Proc. 16th Int. Florida Artif. Intell. Symp (FLAIRS 2003), AAAI Press, Menlo Park (2003) (accepted for publication)Google Scholar
  25. 25.
    Rudová, H., Matyska, L.: Constraint-Based Timetabling with Student Schedules. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp. 109–123. Springer, Heidelberg (2001)Google Scholar
  26. 26.
    Sampson, S.E., Freeland, J.R., Weiss, E.N.: Class Scheduling to Maximize Participant Satisfaction. Interfaces 25, 30–41 (1995)CrossRefGoogle Scholar
  27. 27.
    Schaerf, A.: A Survey of Automated Timetabling. Technical Report CS-R9567. CWI, Amsterdam (1995)Google Scholar
  28. 28.
    Van Hentenryck, P.: Constraint Satisfaction in Logic Programming. MIT Press, Cambridge (1989)Google Scholar
  29. 29.
    Veřmiřovský, K., Rudová, H.: Limited Assignment Number Search Algorithm. In: Student Res. Forum of the 29th Annu. Conf. on Curr. Trends in Theory and Practice of Informatics, SOFSEM 2002 (2002), See

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Hana Rudová
    • 1
  • Keith Murray
    • 2
  1. 1.Faculty of InformaticsMasaryk UniversityBrnoCzech Republic
  2. 2.Space Management and Academic SchedulingPurdue UniversityWest LafayetteUSA

Personalised recommendations