Advertisement

Flow Formulations for the Student Scheduling Problem

  • Eddie Cheng
  • Serge Kruk
  • Marc Lipman
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2740)

Abstract

We discuss the student scheduling problem as it generally applies to high schools in North America. We show that the problem is NP-hard. We discuss various multi-commodity flow formulations, with fractional capacities and integral gains, and we show how a number of practical objectives can be accommodated by the models.

Keywords

Flow Formulation Meeting Time Network Flow Problem Multicommodity Flow Convex Separable 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bertsekas, D.P., Polymenakos, L.C., Tseng, P.: An ε-relaxation Method for Separable Convex Cost Network Flow Problems. SIAM J. Optim. 7, 853–870 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Brunetta, L., Conforti, M., Fischetti, M.: A Polyhedral Approach to an Integer Multicommodity Flow Problem. Discr. Appl. Math. 101, 13–36 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Carter, M.W., Laporte, G.: Recent Developments in Practical Course Timetabling. In: Burke, E.K., Carter, M. (eds.) PATAT 1997. LNCS, vol. 1408, pp. 3–19. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  4. 4.
    Davis, L., Ritter, L.: Schedule Optimization with Probabilistic Search. In: Proc. 3rd IEEE Conf. on Artif. Intell. Appl., pp. 231–236. IEEE, Los Alamitos (1987)Google Scholar
  5. 5.
    De Leone, R., Meyer, R.R., Zakarian, A.: A Partitioned ε-relaxation Algorithm for Separable Convex Network Flow Problems. Comput. Optim. Appl. 12, 107–126 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    de Werra, D.: Construction of School Timetables by Flow Methods. INFOR – Can. J. Oper. Res. and Inf. Process. 9, 12–22 (1971)Google Scholar
  7. 7.
    Even, S., Itai, A., Shamir, A.: On the Complexity of Timetable and Multicommodity Flow Problems. In: Proc. 16th Annu. Symp. Found. Comput. Sci., Berkeley, CA, pp. 184–193. IEEE Computer Society, Long Beach (1975)Google Scholar
  8. 8.
    Even, S., Itai, A., Shamir, A.: On the Complexity of Timetable and Multicommodity Flow Problems. SIAM J. Comput. 5, 691–703 (1976)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Garey, M.R., Johnson, D.S.: Computers and Intractability. Freeman, San Francisco (1979)zbMATHGoogle Scholar
  10. 10.
    Goemans, M.X., Williamson, D.P.: Improved Approximation Algorithms for Maximum Cut and Satisfiability Problems Using Semidefinite Programming. J. ACM 42, 1115–1145 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Grinold, R.C.: Calculating Maximal Flows in a Network with Positive Gains. Oper. Res. 21, 528–541 (1973)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Jensen, P.A., Bhaumik, G.: A Flow Augmentation Approach to the Network with Gains Minimum Cost Flow Problem. Manage. Sci. 23, 631–643 (1976/1977)Google Scholar
  13. 13.
    Jewell, W.S.: Optimal Flow through Networks with Gains. Oper. Res. 10, 476–499 (1962)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Klincewicz, J.G.: A Newton Method for Convex Separable Network Flow Problems. Networks 13, 427–442 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Laporte, G., Desroches, S.: The Problem of Assigning Students to Course Sections in a Large Engineering School. Comput. Oper. Res. 13, 387–394 (1986)CrossRefGoogle Scholar
  16. 16.
    Malek-Zavarei, M., Aggarwal, J.K.: Optimal Flow in Networks with Gains and Costs. Networks 1, 355–365 (1971/1972)Google Scholar
  17. 17.
    Marín Gracia, Á.: Optimization of Nonlinear, Convex and Separable, Networks. In: Proc. 1st Int. Seminar Oper. Res. Basque Provinces, Zarauz, pp. 173–203. Univ. Pais Vasco, Bilbao (1986)Google Scholar
  18. 18.
    Maurras, J.F.: Optimization of the Flow through Networks with Gains. Math. Program. 3, 135–144 (1972)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Miyaji, I., Ohno, K., Mine, H.: Solution Method for Partitioning Students into Groups. Eur. J. Oper. Res. 33, 82–90 (1981)CrossRefGoogle Scholar
  20. 20.
    Sabin, G.C.W., Winter, G.K.: The Impact of Automated Timetabling on Universities – a Case Study. J. Oper. Res. Soc. 37, 689–693 (1986)Google Scholar
  21. 21.
    Sun, J., Kuo, H.: Applying a Newton Method to Strictly Convex Separable Network Quadratic Programs. SIAM J. Optim. 8, 728–745 (1998) (electronic)Google Scholar
  22. 22.
    Tseng, P., Bertsekas, D.P.: An ε-relaxation Method for Separable Convex Cost Generalized Network Flow Problems. Math. Program. Ser. A 88, 85–104 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Vazirani, V.V.: Approximation Algorithms. Springer, Heidelberg (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Eddie Cheng
    • 1
  • Serge Kruk
    • 1
  • Marc Lipman
    • 2
  1. 1.Department of Mathematics and StatisticsOakland UniversityRochesterUSA
  2. 2.Office of the Dean, School of Arts and SciencesIndiana University – Purdue University Fort WayneFort WayneUSA

Personalised recommendations