Advertisement

A Standard Framework for Timetabling Problems

  • Matthias Gröbner
  • Peter Wilke
  • Stefan Büttcher
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2740)

Abstract

When timetabling experts are faced with a new timetabling problem, they usually develop a very specialised and optimised solution for this new underlying problem.

One disadvantage of this strategy is that even slight changes of the problem description often cause a complete redesign of data structures and algorithms. Furthermore, other timetabling problems cannot be fit to the data structures provided.

To avoid this, we have developed a standardised framework which can describe arbitrary timetabling problems such as university timetabling, examination timetabling, school timetabling, sports timetabling or employee timetabling. Thus, a general timetabling language has been developed which enables the definition of resources, events and constraints.

Furthermore, we provide a way to apply standard problem solving methods such as branch-and-bound or genetic algorithms to timetabling problems defined by means of the general timetabling language. These algorithms can be improved by problem-specific user-defined hybrid operators.

In this paper we present a generalised view on timetabling problems from which we derive our timetabling framework. The framework implementation and its application possibilities are shown with some concrete examples. The paper concludes with some preliminary results and an outlook.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bufe, M., Fischer, T., Gubbels, H., Häcker, C., Haspirch, O., Scheibel, C., Weicker, K., Wenig, M.: Automated Solution of a Highly Constrained School Timetabling Problem – Preliminary Results. In: Boers, E.J.W., Gottlieb, J., Lanzi, P.L., Smith, R.E., Cagnoni, S., Hart, E., Raidl, G.R., Tijink, H., et al. (eds.) EvoIASP 2001, EvoWorkshops 2001, EvoFlight 2001, EvoSTIM 2001, EvoCOP 2001, and EvoLearn 2001. LNCS, vol. 2037, pp. 431–440. Springer, Heidelberg (2001)Google Scholar
  2. 2.
    Burke, E., Elliman, D., Weare, R.: Specialised Recombinative Operators for Timetabling Problems. In: Proc. AISB (AI and Simulated Behaviour) Workshop Evolut. Comput., pp. 75–85. Springer, Heidelberg (1995)Google Scholar
  3. 3.
    Burke, E.K., Kingston, J.H.: A Standard Data Format for Timetabling instances. In: Burke, E.K., Carter, M. (eds.) PATAT 1997. LNCS, vol. 1408, pp. 213–222. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  4. 4.
    Caldeira, J.P., Rosa, A.C.: School Timetabling Using Genetic Search. In: Burke, E., Carter, M. (eds.) Practice and Theory of Automated Timetabling II (PATAT 1997, Toronto, Canada, August, selected papers). LNCS, vol. 1408, pp. 115–122. Springer, Heidelberg (1998)Google Scholar
  5. 5.
    Colorni, A., Dorigo, M., Maniezzo, V.: Genetic Algorithms and Highly Constrained Problems: The Time-Table Case. In: Proc. 1st Int. Workshop on Parallel Problem Solving from Nature, pp. 55–59. Springer, Heidelberg (1990)Google Scholar
  6. 6.
    Corne, D., Ross, P., Fang, H.-L.: Evolutionary Timetabling: Practice, Prospects and Work in Progress. In: Prosser, P. (ed.) Proc. UK Planning and Scheduling SIG Workshop. University of Strathclyde (1994)Google Scholar
  7. 7.
    Fernandes, C., Caldeira, J.P., Melicio, F., Rosa, A.: High School Weekly Timetabling by Evolutionary Algorithms. In: Proc. 14th Annual ACM Symp. on Applied Computing, San Antonio, TX (1999)Google Scholar
  8. 8.
    Gröbner, M., Wilke, P.: Optimizing Employee Schedules by a Hybrid Genetic Algorithm. In: Boers, E.J.W., Gottlieb, J., Lanzi, P.L., Smith, R.E., Cagnoni, S., Hart, E., Raidl, G.R., Tijink, H., et al. (eds.) EvoIASP 2001, EvoWorkshops 2001, EvoFlight 2001, EvoSTIM 2001, EvoCOP 2001, and EvoLearn 2001. LNCS, vol. 2037, pp. 463–472. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Gröbner, M.: GTL, A General Timetabling Language, Beta Version, and a Bibliography of Timetabling Publications (2002), Available at http://www2.cs.fau.de/Research/Activities/Soft-Computing/Timetabling
  10. 10.
    Gueret, C., Jussien, N., Boizumault, P., Prins, C.: Building University Timetables Using Constraint Logic Programming. In: Burke, E.K., Ross, P. (eds.) PATAT 1995. LNCS, vol. 1153, pp. 393–408. Springer, Heidelberg (1996)Google Scholar
  11. 11.
    Kingston, J.H.: A User’s Guide to the STTL Timetabling Language, Version 1.0. Basser Department of Computer Science, The University of Sydney (1999)Google Scholar
  12. 12.
    Kingston, J.H.: Modelling Timetabling Problems with STTL. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp. 433–445. Springer, Heidelberg (2001)Google Scholar
  13. 13.
    Lever, J., Wallace, M., Richards, B.: Constraint Logic Programming for Scheduling and Planning. British Telecom Technol. J. 13(1) (January 1995)Google Scholar
  14. 14.
    Meisels, A., Lusternik, N.: Experiments on Networks of Employee Timetabling Problems. In: Burke, E.K., Carter, M. (eds.) PATAT 1997. LNCS, vol. 1408, pp. 215–228. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  15. 15.
    Oster, N.: Stundenplanerstellung für Schulen mit Evolutionären Verfahren. Thesis, Universität Erlangen-Nürnberg (2001)Google Scholar
  16. 16.
    Ross, P., Corne, D., Terashima, H.: The Phase Transition Niche for Evolutionary Algorithms in Timetabling. In: Burke, E.K., Ross, P. (eds.) PATAT 1995. LNCS, vol. 1153, pp. 269–282. Springer, Heidelberg (1996)Google Scholar
  17. 17.
    Weare, R., Burke, E., Elliman, D.: A Hybrid Genetic Algorithm for Highly Constrained Timetabling Problems. In: Eshelman, L.J. (ed.) Proc. 6th Int. Conf. Genetic Algorithms, Pittsburg, PA, pp. 605–610. Morgan Kaufmann, San Francisco (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Matthias Gröbner
    • 1
  • Peter Wilke
    • 2
  • Stefan Büttcher
    • 1
  1. 1.Lehrstuhl für Informatik IIUniversität Erlangen-NürnbergErlangenGermany
  2. 2.Centre for Intelligent Information Processing Systems (CIIPS), Department of Electrical & Electronic EngineeringThe University of Western AustraliaCrawleyAustralia

Personalised recommendations