Advertisement

Knowledge Discovery in a Hyper-heuristic for Course Timetabling Using Case-Based Reasoning

  • E. K. Burke
  • B. L. MacCarthy
  • S. Petrovic
  • R. Qu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2740)

Abstract

This paper presents a new hyper-heuristic method using Case-Based Reasoning (CBR) for solving course timetabling problems. The term hyper-heuristics has recently been employed to refer to “heuristics that choose heuristics” rather than heuristics that operate directly on given problems. One of the overriding motivations of hyper-heuristic methods is the attempt to develop techniques that can operate with greater generality than is currently possible. The basic idea behind this is that we maintain a case base of information about the most successful heuristics for a range of previous timetabling problems to predict the best heuristic for the new problem in hand using the previous knowledge. Knowledge discovery techniques are used to carry out the training on the CBR system to improve the system performance on the prediction. Initial results presented in this paper are good and we conclude by discussing the considerable promise for future work in this area.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abramson, D.: Constructing School Timetables Using Simulated Annealing: Sequential and Parallel Algorithms. Manage. Sci. 37, 98–113 (1991)CrossRefGoogle Scholar
  2. 2.
    Berger, J., Sassi, M., Salois, S.: A Hybrid Genetic Algorithm for the Vehicle Routing Problem with Windows and Itinerary Constraints. In: Proc. Genet. Evolut. Comput. Conf. 1999 (GECCO 1999), pp. 44–51. Morgan Kaufmann, San Mateo (1999)Google Scholar
  3. 3.
    Bezirgan, A.: A Case-Based Approach to Scheduling Constraints. In: Dorn, J., Froeschl, K.A. (eds.) Scheduling of Production Processes, pp. 48–60. Ellis Horwood, New York (1993)Google Scholar
  4. 4.
    Burke, E.K., Ross, P. (eds.): PATAT 1995. LNCS, vol. 1153. Springer, Heidelberg (1996)Google Scholar
  5. 5.
    Burke, E.K., Carter, M. (eds.): PATAT 1997. LNCS, vol. 1408. Springer, Heidelberg (1998)Google Scholar
  6. 6.
    Burke, E., Erben, W. (eds.): PATAT 2000. LNCS, vol. 2079. Springer, Heidelberg (2001)zbMATHGoogle Scholar
  7. 7.
    Burke, E.K., Jackson, K.S., Kingston, J.H., Weare, R.F.: Automated Timetabling: the State of the Art. Comput. J. 40, 565–571 (1997)CrossRefGoogle Scholar
  8. 8.
    Burke, E., Kendall, G., Newall, J., Hart, E., Ross, P., Schulenberg, S.: Hyperheuristic: an Emerging Direction in Modern Search Technology. In: Glover, F., Kochenberg, G. (eds.) Handbook of Meta-heuristics, pp. 457–474. Kluwer, Dordrecht (2003)Google Scholar
  9. 9.
    Burke, E.K., MacCarthy, B., Petrovic, S., Qu, R.: Structured cases in CBR – Reusing and Adapting Cases for Timetabling Problems. J. Knowledge-Based Syst. 13, 159–165 (2000)CrossRefGoogle Scholar
  10. 10.
    Burke, E.K., MacCarthy, B.L., Petrovic, S., Qu, R.: Case-Based Reasoning in Course Timetabling: an Attribute Graph Approach. In: Aha, D.W., Watson, I. (eds.) ICCBR 2001. LNCS (LNAI), vol. 2080, pp. 90–104. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  11. 11.
    Burke, E., Newall, J., Weare, R.: A Simple Heuristically Guided Search for the Timetabling Problem. In: Proc. Int. ICSC Symp. Engng Intell. Syst. (EIS 1998), pp. 574–579 (1998)Google Scholar
  12. 12.
    Burke, E., Petrovic, S.: Recent Research Directions in Automated Timetabling. Eur. J. Oper. Res. 140, 266–280 (2002)zbMATHCrossRefGoogle Scholar
  13. 13.
    Carrasco, A.P., Pato, M.V.: A Multiobjective Genetic Algorithm for the Class/Teacher Timetabling Problem. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp. 3–17. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  14. 14.
    Carter, M.W.: A Lagrangian Relaxation Approach to the Classroom Assignment Problem. IFOR 27, 230–246 (1986)Google Scholar
  15. 15.
    Carter, M.W., Laporte, G.: Recent Developments in Practical Examination Timetabling. In: Burke, E.K., Ross, P. (eds.) PATAT 1995. LNCS, vol. 1153, pp. 3–21. Springer, Heidelberg (1996)Google Scholar
  16. 16.
    Carter, W.M., Laporte, G.: Examination Timetabling: Algorithmic Strategies and Applications. J. Oper. Res. Soc. 74, 373–383 (1996)Google Scholar
  17. 17.
    Carter, M.W., Laporte, G.: Recent Developments in Practical Course Timetabling. In: Burke, E.K., Carter, M. (eds.) PATAT 1997. LNCS, vol. 1408, pp. 3–19. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  18. 18.
    Corne, D., Ross, P.: Peckish Initialisation Strategies for Evolutionary Timetabling. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp. 227–240. Springer, Heidelberg (2001)Google Scholar
  19. 19.
    Costa, D.: A Tabu Search Algorithm for Computing an Operational Timetable. EJOR 76, 98–110 (1994)zbMATHCrossRefGoogle Scholar
  20. 20.
    Cunningham, P., Bonzano, A.: Knowledge Engineering Issues in Developing a Case- Based Reasoning Application. Knowledge-Based Syst. 12, 371–379 (1999)CrossRefGoogle Scholar
  21. 21.
    Cunningham, P., Smyth, B.: Case-Based Reasoning in Scheduling: Reusing Solution Components. Int. J. Prod. Res. 35, 2947–2961 (1997)zbMATHCrossRefGoogle Scholar
  22. 22.
    Fang, H.L., Ross, P., Corne, D.: A Promising Hybrid GA/Heuristic Approach for Open-Shop Scheduling Problems. In: 11th Eur. Conf. Artif. Intell (ECAI 1994), Wiley, New York (1994)Google Scholar
  23. 23.
    Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: From Data Mining to Knowledge Discovery in Databases. In: Fayyad, U., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R. (eds.) Advances in Knowledge Discovery and Data Mining, pp. 1–34. AAAI Press, Menlo Park (1996)Google Scholar
  24. 24.
    Freitas, A.: A Survey of Evolutionary Algorithms for Data Mining and Knowledge Discovery. In: Ghosh, A., Tsutsui, S. (eds.) Advances in Evolutionary Computation, Springer, Heidelberg (2002)Google Scholar
  25. 25.
    Hall, M.A., Smith, L.: Practical Feature Subset Selection Machine Learning. In: Proc. Austral. Comput. Sci. Conf. (1996)Google Scholar
  26. 26.
    Hart, E., Ross, P., Nelson, J.: Solving a Real-world Problem Using an Evolving Heuristically Driven Schedule. Evolut. Comput. 6, 61–80 (1998)CrossRefGoogle Scholar
  27. 27.
    Kolodner, J.L.: Case-Based Reasoning. Morgan Kaufmann, San Mateo (1993)Google Scholar
  28. 28.
    Koton, P.: SMARTlan: A Case-Based Resource Allocation and Scheduling System. In: Proc. Workshop on Case-Based Reasoning (DARPA), pp. 285–289 (1989)Google Scholar
  29. 29.
    Leake, D. (ed.): Case-Based Reasoning: Experiences, Lessons and Future Directions. AAAI Press, Menlo Park (1996)Google Scholar
  30. 30.
    MacCarthy, B.L., Jou, P.: Case-Based Reasoning in Scheduling. In: Khan, M.K., Wright, C.S. (eds.) Proc. Symp. Adv. Manu. Process., Syst. Techniques (AMPST 1996), pp. 211–218. MEP Publications (1996)Google Scholar
  31. 31.
    Miyashita, K., Sycara, K.: CABINS: A Framework of Knowledge Acquisition and Iterative Revision for Schedule Improvement and Reactive Repair. Artif. Intell. 76, 377–426 (1995)CrossRefGoogle Scholar
  32. 32.
    Piatetsky-Shapiro, G.: Knowledge Discovery in Databases. AAAI Press, Menlo Park (1991)Google Scholar
  33. 33.
    Schaef, A.: A Survey of Automated Timetabling. Artif. Intell. Rev. 13, 87–127 (1999)CrossRefGoogle Scholar
  34. 34.
    Schmidt, G.: Case-Based Reasoning for Production Scheduling. Int. J. Prod. Econ. 56/57, 537–546 (1998)CrossRefGoogle Scholar
  35. 35.
    Scott, S., Simpson, R., Ward, R.: Combining Case-Based Reasoning and Constraint Logic Programming Techniques for Packaged Nurse Rostering Systems. In: Proc. 3rd UK Case-Based Reasoning Workshop (1997)Google Scholar
  36. 36.
    Shaw, P.: Using Constraint Programming and Local Search Methods to Solve Vehicle Routing Problems. In: Maher, M.J., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520, pp. 417–431. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  37. 37.
    Terashima-Marin, H., Ross, P., Valenzuela-Rendon, M.: Evolution of Constraint Satisfaction Strategies in Examination Timetabling. In: Proc. Genet. Evolut. Comput. Conf. 1999 (GECCO 1999), pp. 635–642. Morgan Kaufmann, San Mateo (1999)Google Scholar
  38. 38.
    Voudouris, C., Tsang, E.P.K.: Guided Local Search and Its Application to the Travelling Salesman Problem. Eur. J. Oper. Res. 113, 469–499 (1999)zbMATHCrossRefGoogle Scholar
  39. 39.
    Werra, D.: Graphs, Hypergraphs and Timetabling. Methods Oper. Res (Germany F.R.) 49, 201–213 (1985)zbMATHGoogle Scholar
  40. 40.
    Zervoudakis, K., Stamatopoulos, P.: A Generic Object-Oriented Constraint-Based Model for University Course Timetabling. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp. 28–47. Springer, Heidelberg (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • E. K. Burke
    • 1
  • B. L. MacCarthy
    • 2
  • S. Petrovic
    • 1
  • R. Qu
    • 1
  1. 1.School of Computer Science and Information Technology, Jubilee CampusUniversity of NottinghamNottinghamUK
  2. 2.School of Mechanical, Materials, Manufacturing Engineering, and ManagementUniversity of NottinghamNottinghamUK

Personalised recommendations