Advertisement

Search Strategy for Constraint-Based Class–Teacher Timetabling

  • Wojciech Legierski
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2740)

Abstract

The paper deals with a scheduling problem: the computation of class–teacher timetables. Two cases are taken into consideration: high school problems and university department problems. The timetable was constructed using constraint programming techniques. The timetabling needs to take into account a variety of complex constraints and use special-purpose search strategies. The concurrent constraint language Mozart/Oz was used, which provides high-level abstraction, and allows the expression of complex constraints and the creation of a complicated, custom-tailored distribution strategy. This strategy, consisting of six stages, was crucial for finding a feasible solution. The space-based search allows the incorporation of local search into constraint programming; this is very useful for timetable optimization. Technical details and results of the implementation are presented.

Keywords

Local Search Start Time Search Tree Soft Constraint Distribution Strategy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boufflet, J.P., Negre, S.: Three Methods Used to Solve an Examination Timetable Problem. In: Burke, E.K., Ross, P. (eds.) PATAT 1995. LNCS, vol. 1153, pp. 327–344. Springer, Heidelberg (1996)Google Scholar
  2. 2.
    Elmohamed, S., Coddington, P., Fox, G.: A Comparison of Annealing Techniques for Academic Course Scheduling. In: Burke, E.K., Carter, M. (eds.) PATAT 1997. LNCS, vol. 1408, pp. 92–112. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  3. 3.
    Guéret, C., Jussien, N., Boizumault, P., Prins, C.: Building University Modular Timetabling Using Constraint Logic Programming. In: Burke, E.K., Ross, P. (eds.) PATAT 1995. LNCS, vol. 1153, pp. 130–145. Springer, Heidelberg (1996)Google Scholar
  4. 4.
    Henz, M., Würtz, J.: Using Oz for College Timetabling. In: Burke, E.K., Ross, P. (eds.) PATAT 1995. LNCS, vol. 1153, pp. 162–177. Springer, Heidelberg (1996)Google Scholar
  5. 5.
    Jussien, N., Lhomme, O.: Local Search with Constraint Propagation and Conflict- Based Heuristic. Artif. Intell. 139, 21–45 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Kaneko, K., Yoshikawa, M., Nakakuki, Y.: Improving a Heuristic Repair Method for Large-Scale School Timetabling Problems. In: Jaffar, J. (ed.) CP 1999. LNCS, vol. 1713, pp. 275–288. Springer, Heidelberg (1999)Google Scholar
  7. 7.
    Lajos, G.: Complete University Modular Timetabling Using Constraint Logic, Practice and Theory of Automated Timetabling. In: Burke, E.K., Ross, P. (eds.) PATAT 1995. LNCS, vol. 1153, pp. 146–161. Springer, Heidelberg (1996)Google Scholar
  8. 8.
    Mozart Consortium. The Mozart Programming System. Documentation and system, available at http://www.mozart-oz.org
  9. 9.
    Rich, D.C.: A Smart Genetic Algorithm for University Timetabling. In: Burke, E.K., Ross, P. (eds.) PATAT 1995. LNCS, vol. 1153, pp. 181–197. Springer, Heidelberg (1996)Google Scholar
  10. 10.
    Régin, J.C.: Generalized Arc Consistency for Global Cardinality Constraints. In: Proc. AAAI 1996, Portland, OR, pp. 209–215 (1996)Google Scholar
  11. 11.
    Rudová H.: Constraint Satisfaction with Preferences, Ph.D. Thesis, Brno (2001) Google Scholar
  12. 12.
    Schulte C.: Comparing Trailing and Copying for Constraint Programming. In: Proc. 16th Int. Conf. Logic Program (1999)Google Scholar
  13. 13.
    Schulte, C.: Programming Constraint Inference Engines. In: Smolka, G. (ed.) CP 1997. LNCS, vol. 1330. Springer, Heidelberg (1997)Google Scholar
  14. 14.
    Schulte C.: Programming Constraint Services. PhD Thesis, Saarbrócken (2000) Google Scholar
  15. 15.
    White, G.M., Zhang, J.: Generating Complete University Timetables by Combining Tabu Search and Constraint Logic. In: Burke, E.K., Carter, M. (eds.) PATAT 1997. LNCS, vol. 1408, pp. 187–198. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  16. 16.
    Würtz J.: Oz Scheduler: A Workbench for Scheduling Problems. In: Proc. 8th Int. Conf. on Tools with Artificial Intelligence, pp. 149–156 (1996) Google Scholar
  17. 17.
    Zervoudakis, K., Stamatopoulos, P.: A Generic Object-Oriented Constraint-Based Model for University Course Timetabling. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp. 28–47. Springer, Heidelberg (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Wojciech Legierski
    • 1
  1. 1.Institute of Automatic ControlSilesian Technical UniversityGliwicePoland

Personalised recommendations