Advertisement

GRASPing the Examination Scheduling Problem

  • Stephen Casey
  • Jonathan Thompson
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2740)

Abstract

This paper presents a Greedy Randomised Adaptive Search Procedure for solving the examination scheduling problem. GRASP is a two-phased multi-start or iterative method consisting of a construction phase and an improvement phase. Each iteration builds a feasible solution using a probabilistic selection procedure, and then optimises the solution using a local search technique.

Keywords

Simulated Annealing Soft Constraint Construction Phase Quadratic Assignment Problem Saturation Degree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahura, R.K., Orlin, J.B., Tiwari, A.: A Greedy Genetic Algorithm for the Quadratic Assignment Problem. Technical Report. Sloan School of Management, Massachusetts Institute of Technology, Cambridge, MA (1997) Google Scholar
  2. 2.
    Burke, E.K., Elliman, D.G., Ford, P.H., Weare, R.F.: Examination Timetabling in British Universities – a Survey. In: Burke, E.K., Ross, P. (eds.) PATAT 1995. LNCS, vol. 1153, pp. 76–90. Springer, Heidelberg (1996)Google Scholar
  3. 3.
    Burke, E.K., Newall, J., Weare, R.F.: A Memetic Algorithm for University Examination Timetabling. In: Burke, E.K., Ross, P. (eds.) PATAT 1995. LNCS, vol. 1153, pp. 241–250. Springer, Heidelberg (1996)Google Scholar
  4. 4.
    Caramia, M., Dell’Olmo, P., Italiano, G.F.: New Algorithms for Examination Timetabling. In: Näher, S., Wagner, D. (eds.) WAE 2000. LNCS, vol. 1982, pp. 230–241. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Carter, M.W.: A Survey of Practical Applications of Examination Timetabling. Oper. Res. 34, 193–202 (1986)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Carter, M.W., Laporte, G., Chinneck, J.W.: A General Examination Scheduling System. Interfaces 24, 109–120 (1994)CrossRefGoogle Scholar
  7. 7.
    Carter, M.W., Laporte, G., Lee, S.T.: Examination Timetabling: Algorithmic Strategies and Applications. J. Oper. Res. Soc. 47, 373–383 (1996)Google Scholar
  8. 8.
    Corne, D., Ross, P., Fang, H.L.: Fast Practical Evolutionary Timetabling. In: Fogarty, T.C. (ed.) AISB-WS 1994. LNCS, vol. 865, Springer, Heidelberg (1994)Google Scholar
  9. 9.
    Di Gaspero, L., Schaerf, A.: Tabu Search Techniques for Examination Timetabling. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp. 104–117. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Feo, T.A., Bard, J.: Flight Scheduling and Maintenance Base Planning. Manage. Sci. 35, 1415–1432 (1989)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Feo, T.A., Resende, M.G.C., Smith, S.H.: A Greedy Randomized Adaptive Search Procedure for Maximum Independent Set. Oper. Res. 42, 860–878 (1994)zbMATHCrossRefGoogle Scholar
  12. 12.
    Fleurent, C., Glover, F.: Improved Constructive Multistart Strategies for the Quadratic Assignment Problem Using Adaptive Memory. INFORMS J. Comput. 11, 198–204 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Johnson, D.: Timetabling University Examinations. J. Oper. Res. Soc. 41, 39–47 (1990)Google Scholar
  14. 14.
    Klincewicz, J.: Avoiding Local Optima in the p-hub Location Problem Using Tabu Search and GRASP. Technical Report. AT&T Laboratories, Holmdel, NJ (1989) Google Scholar
  15. 15.
    Laporte, G., Descroches, S.: Examination Timetabling by Computer, Comput. Oper. Res. 11, 351–360 (1984)CrossRefGoogle Scholar
  16. 16.
    Laguna, M., Gonzalez-Velarde, J.: A Search Heuristic for Just-in-Time Scheduling in Parallel Machines. J. Intell. Manufact. 2, 253–260 (1991)CrossRefGoogle Scholar
  17. 17.
    Laguna, M., Marti, R.: A GRASP for Coloring Sparse Graphs. Technical Report. Graduate School of Business, University of Colorado, Boulder, CO (1998) Google Scholar
  18. 18.
    Merlot, L.T.G., Boland, N., Hughes, B.D., Stuckey, P.J.: A Hybrid Algorithm for the Examination Timetabling problem. In: Proc. 4th Int. Conf. Pract. Theory Automat. Timetabling, pp. 348–371 (2002) Google Scholar
  19. 19.
    Prais, M., Ribeiro, C.C.: Reactive GRASP: An Application to a Matrix Decomposition Problem in TDMA Traffic Assignment. Technical Report. Department of Computer Science, Catholic University of Rio de Janeiro, Brazil (1998) Google Scholar
  20. 20.
    Thompson, J.M., Dowsland, K.A.: Variants of Simulated Annealing for the Examination Timetabling Problem. Ann. Oper. Res. 63, 105–128 (1996)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Stephen Casey
    • 1
  • Jonathan Thompson
    • 1
  1. 1.School of MathematicsCardiff UniversityUK

Personalised recommendations