Advertisement

A Hybrid Algorithm for the Examination Timetabling Problem

  • Liam T. G. Merlot
  • Natashia Boland
  • Barry D. Hughes
  • Peter J. Stuckey
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2740)

Abstract

Examination timetabling is a well-studied combinatorial optimization problem. We present a new hybrid algorithm for examination timetabling, consisting of three phases: a constraint programming phase to develop an initial solution, a simulated annealing phase to improve the quality of solution, and a hill climbing phase for further improvement. The examination timetabling problem at the University of Melbourne is introduced, and the hybrid method is proved to be superior to the current method employed by the University. Finally, the hybrid method is compared to established methods on the publicly available data sets, and found to perform well in comparison.

Keywords

Simulated Annealing Hybrid Algorithm Constraint Programming Memetic Algorithm Hill Climbing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boizumault, P., Delon, Y., Peridy, L.: Constraint Logic Programming for Examination Timetabling. J. Logic Program. 26, 217–233 (1996)zbMATHCrossRefGoogle Scholar
  2. 2.
    Burke, E.K., Jackson, K., Kingston, J., Weare, R.F.: Automated University Timetabling: the State of the Art. Comput. J. 40, 565–571 (1997)CrossRefGoogle Scholar
  3. 3.
    Burke, E.K., Newall, J.: A Multistage Evolutionary Algorithm for the Timetable Problem. IEEE Trans. Evolut. Comput. 3, 63–74 (1999)CrossRefGoogle Scholar
  4. 4.
    Burke, E.K., Newall, J., Weare, R.F.: A Memetic Algorithm for University Exam Timetabling. In: Burke, E.K., Ross, P. (eds.) PATAT 1995. LNCS, vol. 1153, pp. 241–250. Springer, Heidelberg (1996)Google Scholar
  5. 5.
    Burke, E.K., Newall, J., Weare, R.F.: Initialisation Strategies and Diversity in Evolutionary Timetabling. Evolut. Comput. J. (Special Issue on Scheduling) 6, 81–103 (1998)Google Scholar
  6. 6.
    Burke, E.K., Newall, J., Weare, R.F.: A Simple Heuristically Guided Search for the Timetable Problem. In: Proc. Int. ICSC Symp. Eng. Intell. Syst., pp. 574–579 (1998) Google Scholar
  7. 7.
    Caramia, M., Dell’Olmo, P., Italiano, G.F.: New Algorithms for Examination Timetabling. In: Näher, S., Wagner, D. (eds.) WAE 2000. LNCS, vol. 1982, pp. 230–241. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Carter, M., Laporte, G.: Recent Developments in Practical Examination Timetabling. In: Burke, E.K., Ross, P. (eds.) PATAT 1995. LNCS, vol. 1153, pp. 373–383. Springer, Heidelberg (1996)Google Scholar
  9. 9.
    Carter, M., Laporte, G., Chinneck, J.: A General Examination Scheduling System. Interfaces 24, 109–120 (1994)CrossRefGoogle Scholar
  10. 10.
    Carter, M., Laporte, G., Lee, S.T.: Examination Timetabling: Algorithmic Strategies and Applications. J. Oper. Res. Soc. 47, 373–383 (1996)Google Scholar
  11. 11.
    Dowsland, K.: Using Simulated Annealing for Efficient Allocation of Students to Practical Classes. In: Vidal, R.V.V. (ed.) Applied Simulated Annealing. Lecture Notes in Economics and Mathematical Systems, vol. 396, pp. 125–150. Springer, Heidelberg (1993)Google Scholar
  12. 12.
    Dowsland, K.: Off-the-Peg or Made-to-Measure? Timetabling and Scheduling with SA and TS. In: Burke, E.K., Carter, M. (eds.) PATAT 1997. LNCS, vol. 1408, pp. 37–52. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  13. 13.
    Di Gaspero, L., Schaerf, A.: Tabu Search Techniques for Examination Timetabling. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp. 104–117. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  14. 14.
    Van Hentenryck, P.: The OPL Optimization Programming Language. MIT Press, Cambridge (1999)Google Scholar
  15. 15.
    Schaerf, A.: Tabu Search Techniques for Large High-School Timetabling Problems. In: Proc. Natl Conf. Am. Assoc. Artif. Intell., pp. 363–368. AAAI Press, Menlo Park (1996)Google Scholar
  16. 16.
    Thompson, J., Dowsland, K.: General Cooling Schedules for a Simulated Annealing Timetabling System. In: Burke, E.K., Ross, P. (eds.) PATAT 1995. LNCS, vol. 1153, pp. 345–363. Springer, Heidelberg (1996)Google Scholar
  17. 17.
    Thompson, J., Dowsland, K.: Variants of Simulated Annealing for the Examination Timetabling Problem. Ann. Oper. Res. 63, 105–128 (1996)zbMATHCrossRefGoogle Scholar
  18. 18.
    Thompson, J., Dowsland, K.: A Robust Simulated Annealing Based Examination Timetabling System. Comput. Oper. Res. 25, 637–648 (1998)zbMATHCrossRefGoogle Scholar
  19. 19.
    White, G.M., Xie, B.S.: Examination Timetables and Tabu Search with Longer- Term Memory. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp. 85–103. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  20. 20.
    White, G.M., Zhang, J.: Generating Complete University Timetables by Combining Tabu Search with Constraint Logic. In: Burke, E.K., Carter, M. (eds.) PATAT 1997. LNCS, vol. 1408, pp. 187–198. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  21. 21.
    Yoshikawa, M., Kaneko, K., Nomura, Y., Watanabe, M.: A Constraint-Based Approach to High-School Timetabling Problems: a Case Study. In: Proc. Natl Conf. Am. Assoc. Artif. Intell., pp. 1111–1116. AAAI Press, Menlo Park (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Liam T. G. Merlot
    • 1
  • Natashia Boland
    • 1
  • Barry D. Hughes
    • 1
  • Peter J. Stuckey
    • 2
  1. 1.Department of Mathematics and StatisticsThe University of MelbourneAustralia
  2. 2.Department of Computer Science and Software EngineeringThe University of MelbourneAustralia

Personalised recommendations