Advertisement

Storing and Adapting Repair Experiences in Employee Rostering

  • Sanja Petrovic
  • Gareth Beddoe
  • Greet Vanden Berghe
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2740)

Abstract

The production of effective workforce rosters is a common management problem. Rostering problems are highly constrained and require extensive experience to solve manually. The decisions made by expert rosterers are often subjective and are difficult to represent systematically. This paper presents a formal description of a new technique for capturing rostering experience using case-based reasoning methodology. Examples of previously encountered constraint violations and their corresponding repairs are used to solve new rostering problems. We apply the technique to real-world data from a UK hospital.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdennadher, S., Schlenker, H.: INTERDIP – an Interactive Constraint Based Nurse Scheduler. In: Proc. 1st Int. Conf. Exhib. Pract. Applic. Constraint Technol. Logic Program, PACLP (1999)Google Scholar
  2. 2.
    Arthur, J.L., Ravindran, A.: A Multiple Objective Nurse Scheduling Model. AIIE Trans. 13, 55–60 (1981)Google Scholar
  3. 3.
    Bailey, J., Field, J.: Personnel Scheduling with Flexshift Models. J. Oper. Manage. 5, 327–338 (1985)CrossRefGoogle Scholar
  4. 4.
    Beaumont, N.: Scheduling Staff Using Mixed Integer Programming. Eur. J. Oper. Res. 98, 473–484 (1997)zbMATHCrossRefGoogle Scholar
  5. 5.
    Berrada, I., Ferland, J.A., Michelon, P.: A Multi-objective Approach to Nurse Scheduling with Both Hard and Soft Constraints. Socio-Econ. Planning Sci. 30, 183–193 (1996)CrossRefGoogle Scholar
  6. 6.
    Burke, E.K., De Causmaecker, P., Vanden Berghe, G.: A hybrid tabu search algorithm for the nurse rostering problem. In: McKay, B., Yao, X., Newton, C.S., Kim, J.-H., Furuhashi, T. (eds.) SEAL 1998. LNCS (LNAI), vol. 1585, pp. 187–194. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  7. 7.
    Burke, E.K., Cowling, P.I., De Causmaecker, P., Vanden Berghe, G.: A Memetic Approach to the Nurse Rostering Problem. In: Applied Intelligence, pp. 199–214. Kluwer, Dordrecht (2001)Google Scholar
  8. 8.
    Cheng, B.M.W., Lee, J.H.M., Wu, J.C.K.: A Constraint-Based Nurse Rostering System Using a Redundant Modeling Approach. Department of Computer Science and Engineering, The Chinese University of Hong Kong (1996)Google Scholar
  9. 9.
    Dowsland, K.A., Thompson, J.M.: Solving a Nurse Scheduling Problem with Knapsacks, Networks and Tabu Search. J. Oper. Res. Soc. 51, 825–833 (2000)zbMATHGoogle Scholar
  10. 10.
    Dowsland, K.: Nurse Scheduling with Tabu Search and Strategic Oscillation. Eur. J. Oper. Res. 106, 393–407 (1998)zbMATHCrossRefGoogle Scholar
  11. 11.
    Kolodner, J.L.: Case-Based Reasoning. Morgan Kaufmann, San Mateo (1993)Google Scholar
  12. 12.
    Meisels, A., Gudes, E., Solotorevski, G.: Employee Timetabling, Constraint Networks and Knowledge-Based Rules: A Mixed Approach. In: Burke, E.K., Ross, P. (eds.) PATAT 1995. LNCS, vol. 1153, pp. 93–105. Springer, Heidelberg (1996)Google Scholar
  13. 13.
    Meyer auf’m Hofe, H.: Solving Rostering Tasks as Constraint Optimization. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp. 280–297. Springer, Heidelberg (2001)Google Scholar
  14. 14.
    Miller, M.L., Pierskalla, W., Rath, G.: Nurse Scheduling Using Mathematical Programming. Oper. Res. 24, 857–870 (1976)zbMATHCrossRefGoogle Scholar
  15. 15.
    Miyashita, K., Sycaras, K., Mizoguchi, R.: Capturing Scheduling Knowledge from Repair Experiences. Int. J. Human-Comput. Stud. 41, 751–773 (1994)CrossRefGoogle Scholar
  16. 16.
    Scott, S., Simpson, R.: Case-bases Incorporating Scheduling Constraint Dimensions – Experiences in Nurse Rostering. In: Smyth, B., Cunningham, P. (eds.) EWCBR 1998. LNCS (LNAI), vol. 1488, pp. 392–401. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  17. 17.
    Silvestro, R., Silvestro, C.: An Evaluation of Nurse Rostering Practices in the National Health Service. J. Adv. Nursing 32, 525–535 (2000)CrossRefGoogle Scholar
  18. 18.
    Warner, M.: Scheduling Nursing Personnel According to Nurse Preference: a Mathematical Programming Approach. Oper. Res. 24, 842–856 (1976)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Sanja Petrovic
    • 1
  • Gareth Beddoe
    • 1
  • Greet Vanden Berghe
    • 2
  1. 1.Automated Scheduling, Optimisation, and Planning Research Group, School of Computer Science and Information TechnologyUniversity of NottinghamNottinghamUK
  2. 2.KaHo St-Lieven, Information TechnologyGentBelgium

Personalised recommendations