Advertisement

Universally Composable Efficient Multiparty Computation from Threshold Homomorphic Encryption

  • Ivan Damgård
  • Jesper Buus Nielsen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2729)

Abstract

We present a new general multiparty computation protocol for the cryptographic scenario which is universally composable — in particular, it is secure against an active and adaptive adversary, corrupting any minority of the parties. The protocol is as efficient as the best known statically secure solutions, in particular the number of bits broadcast (which dominates the complexity) is Ω (nk |C|), where n is the number of parties, k is a security parameter, and |C| is the size of a circuit doing the desired computation. Unlike previous adaptively secure protocols for the cryptographic model, our protocol does not use non-committing encryption, instead it is based on homomorphic threshold encryption, in particular the Paillier cryptosystem.

Keywords

Ideal Functionality Commitment Scheme Honest Party Probabilistic Polynomial Time Corrupted Party 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Beaver, D., Haber, S.: Cryptographic protocols provably secure against dynamic adversaries. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 307–323. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  2. 2.
    Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for noncryptographic fault-tolerant distributed computation (extended abstract). In: 20th STOC, Chicago, Illinois, pp. 1–10 (May 1988)Google Scholar
  3. 3.
    Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. In: 42th FOCS. IEEE, Los Alamitos (2001)Google Scholar
  4. 4.
    Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively secure multi-party computation. In: 28th STOC, Philadelphia, Pennsylvania, pp. 639–648 (May 1996)Google Scholar
  5. 5.
    Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable twoparty and multi-party secure computation. In: 34th STOC, Montreal, Quebec, Canada, pp. 494–503 (2002)Google Scholar
  6. 6.
    Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols (extended abstract). In: 20th STOC, Chicago, Illinois, pp. 11–19 (May 1988)Google Scholar
  7. 7.
    Cramer, R., Damgaard, I., Nielsen, J.B.: Multiparty computation from threshold homomorphic encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 280–300. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Damgård, I.: Efficient concurrent zero-knowledge in the auxiliary string model. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 418–430. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  9. 9.
    Damgård, I., Nielsen, J.B.: Perfect hiding and perfect binding universally composable commitment schemes with constant expansion factor. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 581–596. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Gennaro, R., Rabin, M., Rabin, T.: Simplified VSS and fast-track multi-party computations with applications to threshold cryptography. In: PODC 1998 (1998)Google Scholar
  11. 11.
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: 19th STOC, New York City, pp. 218–229 (May 1987)Google Scholar
  12. 12.
    Lysyanskaya, A., Peikert, C.: Adaptive security in the threshold setting: From cryptosystems to signature schemes. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 331–350. Springer, Heidelberg (2001)Google Scholar
  13. 13.
    Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)Google Scholar
  14. 14.
    Yao, A.C.: Protocols for secure computations (extended abstract). In: 23rd FOCS, Chicago, Illinois, November 3-5, pp. 160–164. IEEE, Los Alamitos (1982)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Ivan Damgård
    • 1
  • Jesper Buus Nielsen
    • 1
  1. 1.BRICS Department of Computer ScienceUniversity of Aarhus, Ny MunkegadeArhus CDenmark

Personalised recommendations