Skip to main content

Surface Tension Driven Flow of Molten Silicon: Its Instability and the Effect of Oxygen

  • Chapter
Interfacial Fluid Dynamics and Transport Processes

Part of the book series: Lecture Notes in Physics ((LNP,volume 628))

Abstract

Surface-tension-driven flow of molten silicon, which is one of mechanisms of heat and mass transfer during crystal growth, was investigated by using a liquid-bridge configuration under microgravity and on earth. Using microgravity is a convenient way to study surface-tension-driven flow, because buoyancy flow can be suppressed so that only surface-tension-driven flow can be distinguished. In the liquid-bridge configuration, which corresponds to floating-zone growth, flow instability and its three-dimensional structure were investigated through measurement of temperature-oscillation, flow visualization, optical pyrometry of the melt surface, observation of oscillation of the melt/crystal interface, and observation of surface oscillation by phase-shift interferometry. Azimuthal wave number m for instability structure depends on the aspect ratio of the bridge, Γ, which is defined as the ratio of height h to radius r.

Surface-tension-driven flow was found to be affected by oxygen partial pressure of the ambient atmosphere, which corresponds to concentration of oxygen in Si melt. This is very important finding, because for the Czochralski growth system, oxygen dissolves into melt from a crucible wall made of SiO2. It was also found that surface tension and its temperature coefficient strongly depend on oxygen partial pressure. Oxygen partial pressure at a Si melt surface can be deduced experimentally and theoretically by measuring the oxygen partial pressure at the inlet of the gas flow system.

A cellular pattern was observed at a surface of 20 cm deep Czochralski melt, whereas we found a hydrothermal wave at a surface of 8-mm-thick thin melt. Observed patterns are discussed in light of driving force of surface-tension-driven flow in the Czochralski melt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Azami, S. Nakamura, T. Hibiya: J. Crystal Growth 231, 82 (2001)

    Article  ADS  Google Scholar 

  2. T. Azami, T. Hibiya: J. Crystal Growth 233, 417 (2001)

    Article  ADS  Google Scholar 

  3. T. Azami, S. Nakamura, T. Hibiya: J. Electrochem. Soc. 148, G185 (2001)

    Article  Google Scholar 

  4. T. Azami, S. Nakamura, T. Hibiya: J. Crystal Growth 223, 116 (2001)

    Article  ADS  Google Scholar 

  5. T. Azami, S. Nakamura, M. Eguchi, T. Hibiya: J. Crystal Growth 233, 99 (2001)

    Article  ADS  Google Scholar 

  6. M. Cheng, S. Kou: J. Crystal Growth 218, 132 (2000)

    Article  ADS  Google Scholar 

  7. A. Cröll, W. Müller, R. Nitsche: J. Crystal Growth 79, 65 (1986)

    Article  ADS  Google Scholar 

  8. A. Cröll, W. Müller-Sebert, R. Nitsche: Mater. Res. Bull. 24, 995 (1989)

    Article  Google Scholar 

  9. P. Dold, A. Cröll, F. Szofran, S. Nakamura, T. Hibiya, K. W. Benz: Space Station Utilization 1, 31 (2000)

    Google Scholar 

  10. A. Eyer, H. Leiste, R. Nitsche: ‘Crystal Growth of Silicon in Spacelab-1: Experiment ES-321 -’. In: Proceedings of the 5th European Symposium on Materials Sciences under Microgravity - Schloß Elmau, November 5–7, 1984 (ESA SP-222) pp.173–182

    Google Scholar 

  11. A. Ga˜nân, A. Barrero: Microgravity Sci. Technol. 3, 70 (1990)

    ADS  Google Scholar 

  12. J.H. Han, Z. W. Sun, L.R. Dai, J.C. Xie, W.R. Hu: J. Crystal Growth 169, 129 (1996)

    Article  ADS  Google Scholar 

  13. S.C. Hardy: J. Crystal Growth 69, 456 (1984)

    Article  ADS  Google Scholar 

  14. X. Huan, S. Tokawa, S.-I. Chung, K. Terashima, S. Kimura: J. Crystal Growth 156, 52 (1992)

    Article  Google Scholar 

  15. N. Imaishi, S. Yasuhiro, Y. Akiyama, S. Yoda: J. Crystal Growth 230, 164 (2001)

    Article  ADS  Google Scholar 

  16. M. Jurish, W. Löser: J. Crystal Growth 102, 214 (1990)

    Article  ADS  Google Scholar 

  17. T. Kaiser, K.W. Benz: J. Crystal Growth 183, 564 (1998)

    Article  ADS  Google Scholar 

  18. B.J. Keene: surface Interface Anal. 10, 367 (1987)

    Article  Google Scholar 

  19. H.C. Kuhlmann: ‘Thermocapillary Convection in Models of Crystal Growth’, ( Springer-Verlag, Berlin Heidelberg 1999 )

    Google Scholar 

  20. C.W. Lan, S. Kou: J. Crystal Growth 108, 351 (1991)

    Article  ADS  Google Scholar 

  21. M. Levenstam, G. Amberg, T. Carlberg, M. Anderssson: J. Crystal Growth 158, 224 (1996)

    Article  ADS  Google Scholar 

  22. J. Leypoldt, H. C. Kuhlmann, H. J. Rath: J. Fluid Mech. 414, 285 (2000)

    Article  ADS  MATH  Google Scholar 

  23. Y.R. Li, N. Imaishi, T. Azami, T. Hibiya: ‘Thermocapillary Flow in a Thin Annular Pool of Silicon Melt’. In: Proceedings of the SPIE vol.4813, “Crystal Materials for Nonlinear Optical Devises and Microgravity Science”, (2002) pp. 12–23

    Google Scholar 

  24. K.C. Mills, B.J. Keene, R.F. Brooks, A. Shirali: Philos. Trans. R. Soc. London, Ser. A 356, 910 (1998)

    Google Scholar 

  25. K. Mukai, Z. Yuan, K. Nogi, T. Hibiya: ISIJ International 40, S148 (2000)

    Article  Google Scholar 

  26. S. Nakamura, K. Kakimoto, and T. Hibiya: ‘Convection Visualization and Temperature Fluctuation Measurement in a Molten Silicon Column’. In: Lecture Notes in Physics, Materials and Fluids under Low Gravity, Proceedings of the IXth European Symposium on Gravity-Dependent Phenomena in Physical Sciences Held at Berlin, Germany, 2–5 May 1995, ed. by L. Ratke, H. Walter and B. Feuerbacher ( Springer-Verlag, Berlin Heidelberg 1996 ) pp. 343–349

    Google Scholar 

  27. S. Nakamura, T. Hibiya, K. Kakimoto, N. Imaishi, S. Nishizawa, A. Hirata, K. Mukai, S. Yoda, T. S. Morita: J. Crystal Growth 186, 85 (1998)

    Article  ADS  Google Scholar 

  28. S. Nakamura, T. Hibiya: Adv. Space Res. 24, 1417 (1999)

    Article  ADS  Google Scholar 

  29. S. Nakamura, T. Hibiya, N. Imaishi, S. Yoda, T. Nakamura, M. Koyama: Micro-gravity Sci. Technol. 12, 56 (1999)

    Google Scholar 

  30. H. Nakanishi, M. Watanabe, K. Terashima: J. Crystal Growth 236, 523 (2002)

    Article  ADS  Google Scholar 

  31. K. Onuma, M. Sumiji, S. Nakamura, T. Hibiya: Appl. Phys. Letters. 74, 3570 (1999)

    Article  ADS  Google Scholar 

  32. J.R.A. Pearson: J. Fluid Mech. 4, 489 (1958)

    Article  ADS  MATH  Google Scholar 

  33. S.I. Popel, L.M. Shergin, B.V. Tsarevskii: Russ Metall. 2, 72 (1976)

    Google Scholar 

  34. F. Preisser, D. Schwabe, A. Scharmann: J. Fluid Mech. 126, 545 (1983)

    Article  ADS  Google Scholar 

  35. G. Ratnieks, A. Muizeˇznieks, L. Buligins, G. Raming, A. Muhlbauer: Magnitnaya Gidrodinamika 35, 278 (1999)

    Google Scholar 

  36. M. Ratto, E. Ricci, E. Arato: J. Crystal Growth 217, 233 (2000)

    Article  ADS  Google Scholar 

  37. E. Ricci, L. Nanni, A. Passerone, Philos: Trans. R. Soc. London, Ser. A 356, 857 (1998)

    Article  ADS  Google Scholar 

  38. R. Rupp, G. Müller, G. Neumann: J. Crystal Growth 97, 34 (1989)

    Article  ADS  Google Scholar 

  39. D. Schwabe, R. Velten, A. Scharmann: J. Crystal Growth 99, 1258 (1990)

    Article  ADS  Google Scholar 

  40. M. Schweizer, A. Cröll, P. Dold, Th. Kaiser, M. Lichtensteiger, K. W. Benz: J. Crystal Growth 203, 500 (1999)

    Article  ADS  Google Scholar 

  41. M. Smith, S. Davis: J. Fluid Mech. 132, 119 (1983)

    Article  ADS  MATH  Google Scholar 

  42. M. Sumiji, S. Nakamura, K. Onuma, T. Hibiya: Jpn. J. Appl. Phys. 39, 3688 (2000)

    Article  ADS  Google Scholar 

  43. M. Sumiji, S. Nakamura, T. Hibiya: J. Crystal Growth 223, 503 (2002)

    Article  Google Scholar 

  44. M. Sumiji, S. Nakamura, T. Hibiya: J. Crystal Growth 235, 55 (2002)

    Article  ADS  Google Scholar 

  45. M. Sumiji, T. Azami, T. Hibiya: J. Crystal Growth, submitted

    Google Scholar 

  46. K. Takagi, M. Otaka, H. Natsui, T. Arai, S. Yoda, Z. Yuan, K. Mukai, S. Yasuhiro, N. Imaishi: J. Crystal Growth 233, 399 (2001)

    Article  ADS  Google Scholar 

  47. S. Togawa, Y. Nishi, M. Kobayashi: Electrochemical Society Proceedings 98–13, 67 (1998)

    Google Scholar 

  48. M. Wanshura, V. Shevtsova, H. C. Kuhlmann, H.J. Rath: Phys. Fluids 7, 912 (1995)

    Article  ADS  Google Scholar 

  49. M. Watanabe, M. Eguchi, T. Hibiya: Jpn. J. Appl. Phys. 38, L10 (1999)

    Article  ADS  Google Scholar 

  50. H. Yamagishi, I. Fusegawa: J. Jpn. Assoc. Crystal Growth 17, 304 (1990)

    Google Scholar 

  51. Y.K. Yang, S. Kou: J. Crystal Growth 222, 135 (2001)

    Article  ADS  Google Scholar 

  52. K.-W. Yi, K. Kakimoto, M. Eguchi, M. Watanabe, T. Shyo, T. Hibiya: J. Crystal Growth 144, 20 (1994)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hibiya, T., Azami, T., Sumiji, M., Nakamura, S. (2003). Surface Tension Driven Flow of Molten Silicon: Its Instability and the Effect of Oxygen. In: Narayanan, R., Schwabe, D. (eds) Interfacial Fluid Dynamics and Transport Processes. Lecture Notes in Physics, vol 628. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45095-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45095-5_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07362-5

  • Online ISBN: 978-3-540-45095-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics