Skip to main content

Thermocapillary Convection in Cylindrical Geometries

  • Chapter
Interfacial Fluid Dynamics and Transport Processes

Part of the book series: Lecture Notes in Physics ((LNP,volume 628))

Abstract

Thermocapillary convection in two types of cylindrical geometries is studied by three-dimensional numerical simulations: an open cylindrical annulus heated from the outside wall and a liquid bridge. The non-deformable free surfaces are either flat or curved as determined by the fluid volume, V, and the Young-Laplace equation. Convection is steady and axisymmetric at sufficiently low values of the Reynolds number, Re, with either flat or curved surfaces. For the parameter ranges considered, it is found that only steady convection is possible at any Re in strictly axisymmetric computations. Transition to oscillatory three-dimensional motions occurs as Re increases beyond a critical value dependent on the aspect ratio, the Prandtl number, and V. Good agreement with available experiments is achieved in all cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Garnier, A. Chiffaudel: Eur. Phys.J. B19, 87 (2001)

    ADS  Google Scholar 

  2. Y. Kamotani, S. Ostrach, A. Pline: J. Heat Transfer 117, 611 (1995)

    Article  Google Scholar 

  3. Y. Kamotani, S. Ostrach, J. Masud: J. Fluid Mech. 410, 211. (2000)

    Article  ADS  MATH  Google Scholar 

  4. M. Levenstam, G. Amberg, C. Winkler: Phys. Fluids 13, 807. (2001)

    Article  ADS  Google Scholar 

  5. J. Leypoldt, H. Kuhlmann, H. Rath: J. Fluid Mech. 414, 285 (2000)

    Article  ADS  MATH  Google Scholar 

  6. J. Masud, Y. Kamotani, S. Ostrach: J. Thermophysics Heat Transfer 11, 105 (1997)

    Article  Google Scholar 

  7. J. Metzger, D. Schwabe, A. Cramer, A. Scharmann: Final Report of Sounding Rocket Experimnets in Fluid Science and Material Science, Texus 28–30, MASER 5MAXUS1(ESA SP-1132, 4, 60–71 October (1994)

    Google Scholar 

  8. M. Mundrane, A. Zebib: J. Thermophysics Heat Transfer, 9, 795 (1995)

    Article  Google Scholar 

  9. S. Patankar: Numerical heat transfer and fluid flow, (Mcgraw-hill book company 1980 )

    Google Scholar 

  10. F. Preisser, D. Schwabe, A. Scharmann: J. Flud Mech. 126, 545 (1983)

    Article  ADS  Google Scholar 

  11. P. Rudolph: Prog. Crystal Growth and Charact. 29, 275 (1994)

    Article  Google Scholar 

  12. D. Schwabe: Physico-Chemical Hydrodynamics 2, 263 (1981)

    Google Scholar 

  13. D. Schwabe, A. Zebib, B.- C. Sim: J. Fluid Mech. (in press) (2003)

    Google Scholar 

  14. V. Shevtsova, J. Legros: Phys. Fluids 10, 1621 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. V. Shevtsova, M. Mojahed, J. Legros: Acta Astronautica 44, 625 (1999)

    Article  ADS  Google Scholar 

  16. B.-C. Sim, A. Zebib, D. Schwabe: J. Fluid Mech. (in press) (2003)

    Google Scholar 

  17. B.-C. Sim, A. Zebib: Phys. Fluids 14, 225 (2002)

    Article  ADS  Google Scholar 

  18. B.-C. Sim, A. Zebib: Int. J. Heat Mass Transfer 45, 4983 (2002)

    Article  MATH  Google Scholar 

  19. B.-C. Sim: Thermocapillary convection in cylindrical geometries. Ph. D. dissertation, Rutgers University (2002)

    Google Scholar 

  20. B.-C. Sim, A. Zebib: J. Thermophysics Heat Transfer 16, 553 (2002)

    Article  Google Scholar 

  21. M. Smith, S. Davis: J. Fluid Mech. 132, 119 (1983)

    Article  ADS  MATH  Google Scholar 

  22. L. Sumner, G. Neitzel, J.-P. Fontaine, P. Dell’Aversana: Phys. Fluids 13, 107 (2001)

    Article  ADS  Google Scholar 

  23. M. Wanschura, V. Shevtsova, H. Kuhlmann, H. Rath: Phys. Fluids 7, 912 (1995)

    Article  ADS  MATH  Google Scholar 

  24. J. Xu, A. Zebib: J. Fluid Mech. 364, 187 (1998)

    Article  ADS  MATH  Google Scholar 

  25. A. Zebib, G. Homsy, E. Meiburg: Phys. Fluids 28, 3467 (1985)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sim, BC., Zebib, A., Schwabe, D. (2003). Thermocapillary Convection in Cylindrical Geometries. In: Narayanan, R., Schwabe, D. (eds) Interfacial Fluid Dynamics and Transport Processes. Lecture Notes in Physics, vol 628. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45095-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45095-5_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07362-5

  • Online ISBN: 978-3-540-45095-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics