Skip to main content

Thermocapillary Droplet Migration on an Inclined Solid Surface

  • Chapter

Part of the book series: Lecture Notes in Physics ((LNP,volume 628))

Abstract

Active control of the position of a liquid droplet on a solid surface is a crucial part in the design of discrete fluid management technology for microfluidic applications. One way to accomplish this control is to impose specially shaped thermal fields upon the droplet and/or the solid surface. The imposed temperature gradient produces a surface-tension-driven flow inside the droplet that forces the motion of the contact line. When the imposed temperature gradient is large enough, this motion causes the droplet to migrate in the direction of decreasing temperature. In this paper, a detailed lubrication theory is presented that describes this internal flow and the subsequent contact-line motion in a thin droplet. Results are presented to show that this technique can be used to drive a droplet up an inclined solid surface against the force of gravity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.M. Anderson, S.H. Davis: Phys. Fluids 7, 248 (1995)

    Article  ADS  MATH  Google Scholar 

  2. S.W. Benintendi, M.K. Smith: Phys. Fluids 11, 982 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. S.W. Benintendi: Thermocapillary Migration of a Three-Dimensional Liquid Droplet on a Solid Surface. Ph.D. Thesis, Georgia Institute of Technology, Atlanta, GA (1999)

    Google Scholar 

  4. J.P. Boyd: Chebyshev & Fourier Spectral Methods, Lecture Notes in Engineering 49 ( Springer-Verlag, New York 1989 )

    Google Scholar 

  5. A.M. Cazabat, F. Heslot, S.M. Troian, P. Carles: Nature 346, 824 (1990)

    Article  ADS  Google Scholar 

  6. M.K. Chaudhury, G.M. Whitesides: Science 256, 1539 (1992)

    Article  ADS  Google Scholar 

  7. J.- D. Chen: J. Colloid Interface Sci. 122, 60 (1988)

    Article  Google Scholar 

  8. R. G. Cox: J. Fluid Mech. 168, 169 (1986)

    Article  ADS  MATH  Google Scholar 

  9. P.G. de Gennes: Rev. Modern Physics 57, 827 (1985)

    Article  ADS  Google Scholar 

  10. P. Dimitrakopoulos, J.J.L. Higdon: J. Fluid Mech. 395, 181 (1999)

    Article  ADS  MATH  Google Scholar 

  11. E.B. Dussan, S. H. Davis: J. Fluid Mech. 65, 71 (1974)

    Article  ADS  MATH  Google Scholar 

  12. E.B. Dussan V: J. Fluid Mech. 77, 665 (1976)

    Article  ADS  MATH  Google Scholar 

  13. E.B. Dussan V: Ann. Rev. Fluid Mech. 11, 371 (1979)

    Article  ADS  Google Scholar 

  14. E.B. Dussan, R.T.-P. Chow: J. Fluid Mech. 137, 1 (1983)

    Article  ADS  MATH  Google Scholar 

  15. E.B. Dussan: J. Fluid Mech. 151, 1 (1985)

    Article  ADS  MATH  Google Scholar 

  16. P. Ehrhard, S.H. Davis: J. Fluid Mech. 229, 365 (1991)

    Article  ADS  MATH  Google Scholar 

  17. P. Ehrhard: J. Fluid Mech. 257, 463 (1993)

    Article  ADS  Google Scholar 

  18. R. Goodwin, G. M. Homsy: Phys. Fluids 3, 515 (1991)

    ADS  MATH  Google Scholar 

  19. H.P. Greenspan: J. Fluid Mech. 84, 125 (1978)

    Article  ADS  MATH  Google Scholar 

  20. H.P. Greenspan, B.M. McCay: Stud. Appl. Math. 64, 95 (1981)

    MathSciNet  MATH  Google Scholar 

  21. P.J. Haley, M.J. Miksis: J. Fluid Mech. 223 57 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. L.M. Hocking: Q. J. Mech. Appl. Maths. 34, 37 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  23. L.M. Hocking: Q. J. Mech. Appl. Maths. 36, 55 (1983)

    Article  MATH  Google Scholar 

  24. L.M. Hocking, A.D. Rivers: J. Fluid Mech. 121, 425 (1982)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. L.M. Hocking: Phys. Fluids 7, 1214 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. R.L. Hoffman: J. Colloid Interface Sci. 50, 228 (1975)

    Article  Google Scholar 

  27. C. Huh, L.E. Scriven: J. Colloid Interface Sci. 35, 85 (1971)

    Article  Google Scholar 

  28. C. Huh, S.G. Mason: J. Fluid Mech. 81, 401 (1977)

    Article  ADS  Google Scholar 

  29. P.G. Lopez, S.G. Bankoff, M.J. Miksis: J. Fluid Mech. 324, 261 (1996)

    Article  ADS  MATH  Google Scholar 

  30. C. Marangoni: Nuova Cimento 5, 239 (1871)

    Article  Google Scholar 

  31. A.C. Or, R.E. Kelly, L. Cortelezzi, J. L. Speyer: J. Fluid Mech. 387, 321 (1999)

    Article  ADS  MATH  Google Scholar 

  32. A. Oron: Phys. Fluid 12, 1633 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  33. A. Oron, S.G. Bankoff: Physics Fluid 13, 1107 (2001)

    Article  ADS  Google Scholar 

  34. J.R.A. Pearson: J. Fluid Mech. 4, 489 (1958)

    Article  ADS  MATH  Google Scholar 

  35. L.M. Pismen, Y. Pomeau: Phys. Rev. E 62, 2480 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  36. R.J. Riley, G.P. Neitzel: J. Fluid Mech. 359, 143 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. S.W. Schwartz, S.B. Tejeda: J. Colloid Interface Sci. 38, 359 (1972)

    Article  Google Scholar 

  38. L.M. Schwartz: Phys. Fluids 1, 443 (1989)

    Article  ADS  MATH  Google Scholar 

  39. Y.D. Shikhmurzaev: J. Fluid Mech. 334, 211 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. Y.D. Shikhmurzaev: Phys. Fluids 9, 266 (1997)

    Article  ADS  Google Scholar 

  41. M.K. Smith: J. Fluid Mech. 294, 209 (1995)

    Article  ADS  MATH  Google Scholar 

  42. M.K. Smith, D.R. Vrane: ‘Deformation and Rupture in Confined, Thin Liquid Films Driven by Thermocapillarity’. In: Fluid Dynamics at Interfaces, eds. W. Shyy, R. Narayanan, (Cambridge University Press, United Kingdom 1999) pp. 221233

    Google Scholar 

  43. L.H. Tanner: J. Phys. D: Appl. Phys. 12, 1473 (1979)

    Article  ADS  Google Scholar 

  44. S.M. Troian, E. Herbolzheimer, S.A. Safran, J.F. Joanny: Europhys. Lett. 10, 25 (1989)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Smith, M.K., Benintendi, S.W., Benjamin, C.P. (2003). Thermocapillary Droplet Migration on an Inclined Solid Surface. In: Narayanan, R., Schwabe, D. (eds) Interfacial Fluid Dynamics and Transport Processes. Lecture Notes in Physics, vol 628. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45095-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45095-5_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07362-5

  • Online ISBN: 978-3-540-45095-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics