Skip to main content

The Influence of Static and Dynamic Free-Surface Deformations on the Three-Dimensional Thermocapillary Flow in Liquid Bridges

  • Chapter
Book cover Interfacial Fluid Dynamics and Transport Processes

Part of the book series: Lecture Notes in Physics ((LNP,volume 628))

Abstract

The liquid-phase transport of heat and mass during the float-zone crystal-growth process is strongly affected by the surface-tension-driven flow caused by thermal gradients. In the half-zone model of this process the basic toroidal thermocapillary flow can become unstable to a three-dimensional and time-dependent state if the temperature gradients along the liquid—gas interface are increased. The corresponding two- and three-dimensional flows are analyzed here with emphasis on flow-induced dynamic deformations of the interface. The problem is treated using an asymptotic expansion of all relevant variables in the limit of high surface tension. The magnitude of the flow-induced surface deflection is quantified and the relative importance of different mechanisms is established. It is shown that the deformations are passive during the transition to oscillatory flow in high-Prandtl-number liquids as along as the capillary number is sufficiently small.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Albensoeder, H.C. Kuhlmann: Eur. J. Mech. B/Fluids 21, 307 (2002)

    Article  MATH  Google Scholar 

  2. C.E. Chang, W.R. Wilcox: J. Crystal Growth 28, 8 (1975)

    Article  ADS  Google Scholar 

  3. Q.S. Chen, W.R. Hu: Intl. J. Heat Mass Transfer 41, 825 (1998)

    Article  MATH  Google Scholar 

  4. Q.S. Chen, W.R. Hu, V. Prasad: J. Crystal Growth 203, 261 (1999)

    Article  ADS  Google Scholar 

  5. T. DebRoy, S.A. David: Rev. Mod. Phys. 67, 85 (1995)

    Article  ADS  Google Scholar 

  6. Y. Kamotani, S. Ostrach: ASME J. Heat Transfer 120, 758 (1998)

    Article  Google Scholar 

  7. Y. Kamotani, S. Ostrach, M. Vargas: J. Crystal Growth 66, 83 (1984)

    Article  ADS  Google Scholar 

  8. H.C. Kuhlmann: Phys. Fluids A 1, 672 (1989)

    Article  ADS  MATH  Google Scholar 

  9. H.C. Kuhlmann: Thermocapillary Convection in Models of Crystal Growth volume 152 of Springer Tracts in Modern Physics, (Springer, Berlin, Heidelberg 1999 )

    Google Scholar 

  10. H.C. Kuhlmann, C. Nienhüser: Fluid Dyn. Res. 31, 103 (2002)

    Article  ADS  MATH  Google Scholar 

  11. H.C. Kuhlmann, C. Nienhüser, H. J. Rath: J. Engng Math. 36, 207 (1999)

    Article  MATH  Google Scholar 

  12. H.C. Kuhlmann, H.J. Rath: J. Fluid Mech. 247, 247 (1993)

    Article  ADS  MATH  Google Scholar 

  13. L.D. Landau, E.M. Lifshitz: Fluid mechanics, ( Pergamon Press, New York 1959 )

    Google Scholar 

  14. M. Levenstam, G. Amberg: J. Fluid Mech. 297, 357 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. M. Levenstam, G. Amberg, C. Winkler: Phys. Fluids 13, 807 (2001)

    Article  ADS  Google Scholar 

  16. J. Leypoldt, H.C. Kuhlmann, H. J. Rath: J. Fluid Mech. 414, 285 (2000)

    Article  ADS  MATH  Google Scholar 

  17. J. Masud, Y. Kamotani, S. Ostrach: AIAA J. Thermophys. Heat Transfer 11, 105 (1997)

    Article  Google Scholar 

  18. J. Meseguer, L. A. Slobozhanin, J. M. Perales: Adv. Space Res. 16, 5 (1995)

    Article  ADS  Google Scholar 

  19. T.E. Morthland, J.S. Walker: J. Crystal Growth 158, 471 (1995)

    Article  Google Scholar 

  20. M. Mundrane, J. Xu, A. Zebib: Adv. Space Res. 16 (7), 41 (1995)

    Article  ADS  Google Scholar 

  21. G.P. Neitzel, K.-T. Chang, D.F. Jankowski, H.D. Mittelmann: Phys. Fluids A 5, 108 (1993)

    Article  ADS  MATH  Google Scholar 

  22. C. Nienhüser, H.C. Kuhlmann: J. Fluid Mech. 458, 35 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. K. Nishino, S. Yoda: ‘The role of dynamic surface deformation in oscillatory Marangoni convection in liquid bridge of high Prandtl number’. In: Marangoni Convection Modeling Research, ed. by H. Inokuchi, (NASDA Technical Memorandum TMR-000006E, 2000 ) pp. 43–71

    Google Scholar 

  24. A. Oron, S. H. Davis, S. G. Bankoff: Rev. Mod. Phys. 69, 931 (1997)

    Article  ADS  Google Scholar 

  25. S. Ostrach, Y. Kamotami, C. L. Lai: PhysicoChem. Hydrodyn. 6, 585 (1985)

    ADS  Google Scholar 

  26. J.R.A. Pearson: J. Fluid Mech. 4, 489 (1958)

    Article  ADS  MATH  Google Scholar 

  27. W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling: Numerical Recipes FORTRAN, (Cambridge University Press, 1989 )

    Google Scholar 

  28. A. Rybicki, J.M. Floryan: Phys. Fluids 30, 1973 (1987)

    Article  ADS  MATH  Google Scholar 

  29. A. Rybicki, J.M. Floryan: Phys. Fluids 30, 1956 (1987)

    Article  ADS  MATH  Google Scholar 

  30. L.E. Scriven: Chem. Eng. Sci. 12, 98 (1960)

    Article  Google Scholar 

  31. M.K. Smith, S.H. Davis: J. Fluid Mech. 132, 119 (1983)

    Article  ADS  MATH  Google Scholar 

  32. L.B.S. Sumner, G.P. Neitzel, J.-P. Fontaine, P. D. Aversana: Phys. Fluids 13, 107 (2001)

    Article  ADS  Google Scholar 

  33. C.-Y. Tsai, S.E. Widnall: J. Fluid Mech. 73, 721 (1976)

    Article  ADS  MATH  Google Scholar 

  34. R. Velten, D. Schwabe, A. Scharmann: Phys. Fluids A 3, 267 (1991)

    Article  ADS  Google Scholar 

  35. M. Wanschura, H.C. Kuhlmann, H.J. Rath: Phys. Rev. E 55, 7036 (1997)

    Article  ADS  Google Scholar 

  36. M. Wanschura, V.S. Shevtsova, H.C. Kuhlmann, H. J. Rath: Phys. Fluids 7, 912 (1995)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kuhlmann, H.C., Nienhüser, C. (2003). The Influence of Static and Dynamic Free-Surface Deformations on the Three-Dimensional Thermocapillary Flow in Liquid Bridges. In: Narayanan, R., Schwabe, D. (eds) Interfacial Fluid Dynamics and Transport Processes. Lecture Notes in Physics, vol 628. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45095-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45095-5_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07362-5

  • Online ISBN: 978-3-540-45095-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics