Skip to main content

Robust Multiuser Detection Using Artificial Neural Networks

  • Chapter
Soft Computing in Communications

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 136))

  • 173 Accesses

Abstract

Abstract This chapter surveys the applications of artificial neural networks (ANNs) for multiuser detection in direct-sequence code-division multiple-access systems. We aim to stimulate more research on neural network techniques for robust multiuser detection in non-Gaussian channels. Here, we present the M-estimation technique for robust decoffelating detection and provide a summary of existing algorithms. We reveal the powerful features of ANNs by focusing on a special recurrent neural network structure for implementing the robust decorrelating detector and highlight its computational saving. Extension of this technique to multicarrier CDMA systems with turbo decoding in Rayleigh fading, impulsive noise channels is then investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Roychowdhury V, Siu KY, Orlitsky A, Eds. (1994) Theoretical Advances in Neural Computation and Learning, Kluwer Academic, Boston

    MATH  Google Scholar 

  2. Jain LC, Fanelli AM, Eds. (2000) Recent Advances in Artificial Neural Networks: Design and Applications, CRC Press, Boca Raton

    Google Scholar 

  3. Proakis JG (1989) Digital Communications, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  4. Fazel K (1993) Performance of CDMA/OFDM for mobile communication systems. In Proceedings of the IEEE International Conference on Universal Personal Communications, Ottawa, Ont., Canada, 12–15 Oct., 975–979

    Chapter  Google Scholar 

  5. Yee N, Linnartz JPMG, Fettweis G (1994) Multicarrier CDMA in indoor wireless radio networks. IEICE Trans Commun E77B: 900–904

    Google Scholar 

  6. Kaiser S (1995) OFDM-CDMA versus DS-CDMA: performance evaluation for fading channels. In Proceedings of the IEEE International Conference on Communications, Seattle, WA, USA, June, 3:1722–1726

    Chapter  Google Scholar 

  7. Hara S, Prasad R (1999) Design and performance of multicarrier CDMA systern in frequency-selective Rayleigh fading channels. IEEE Trans Veh Technol 48: 1584–1595

    Article  Google Scholar 

  8. Helard M, Le Gouable R, Helard JF, Baudais JY (2001) Multicarrier CDMA techniques for future wideband wireless networks. Ann Telecommun 56: 260–274

    Google Scholar 

  9. Verdu S (1998) Multiuser Detection, Cambridge Univ. Press, Cambridge, U.K.

    MATH  Google Scholar 

  10. Akhter MS (1998) Signal Processing for MC-CDMA. M.Eng. Dissertation, Faculty of Information Technology, School of Physics and Electronic Systems Engineering, University of South Australia

    Google Scholar 

  11. Katle PL, Sesay AB (2001) Performance of turbo coded multicarrier CDMA with iterative multiuser detection and decoding. In Proceedings of the Canadian Conference in Electrical and Computer Engineering, Toronto, Ontario, Canada, 13–16 May, 105–110

    Google Scholar 

  12. Akhter MS, Asenstorfer J, Alexander PD, Reed MC (1998) Performance of multi-carrier CDMA with iterative detection. In Proceedings of the IEEE International Conference on Universal Personal Communications, Florence, Italy, 5–9 Oct., 1:131–135

    Google Scholar 

  13. Kaiser S, Papke L (1996) Optimal detection when combining OFDM-CDMA with convolutional and turbo channel coding. In Proceedings of the IEEE International Conference on Communications, Dallas, TX, USA, June, 1:343–348

    Google Scholar 

  14. Chuah TC, Sharif BS, Hinton OR (2001) A neural network approach to DS-CDMA multiuser detection in impulsive channels. In Proceedings of the International Conference on Information, Communications, and Signal Processing, Singapore, 15–18 Oct

    Google Scholar 

  15. Berrou C, Glavieux A (1996) Near optimum error-correcting coding and decoding: Turbo codes. IEEE Trans Commun 44: 1261–1271

    Article  Google Scholar 

  16. Aazhang B, Paris BP, Orsak GC (1992) Neural networks for multiuser detection in code-division multiple-access communications. IEEE Trans Commun 40: 1212–1222

    Article  MATH  Google Scholar 

  17. Mitra U, Poor HV (1995) Adaptive receiver algorithms for near-far resistant CDMA. IEEE Trans Commun 43: 1713–1724

    Article  MATH  Google Scholar 

  18. Engel I, Bershad NJ (1997) Statistical convergence analysis of Rosenblatt’s perceptron algorithm as a DS-spread spectrum detector. IEEE Trans Signal Process 45: 2843–2846

    Article  Google Scholar 

  19. Mitra U, Poor HV (1994) Neural-network techniques for adaptive multiuser demodulation. IEEE J Select Areas Commun 12: 1460–1470

    Article  Google Scholar 

  20. Kechriotis GI, Manolakos ES (1996) Hopfield neural network implementation of the optimal CDMA multiuser detector. IEEE Trans Neural Networks 7: 131–141

    Article  Google Scholar 

  21. Hopfield JJ (1984) Neurons with graded response have collective computational properties like those of two-state neurons. Proc Nat Acad Sci 81: 3088–3092

    Article  Google Scholar 

  22. Varanasi MK, Aazhang B (1990) Multistage detection in asynchronous codedivision multiple-access communications. IEEE Trans Commun 38: 509–519

    Article  Google Scholar 

  23. Kechriotis GI, Manolakos ES (1996) A hybrid digital signal processing neural netowrk CDMA multiuser detection scheme. IEEE Trans Circuits Syst II-Analog Digit Signal Process 43: 96–104

    Article  Google Scholar 

  24. Chen DC, Sheu B J. (1998) A compact neural-network based CDMA receiver. IEEE Trans Circuits Syst II-Analog Digit Signal Process 45: 384–387

    Article  Google Scholar 

  25. Chen S, Samingan AK, Hanzo L (2001) Support vector machine multiuser receiver for DS-CDMA signals in multipath channels. IEEE Trans Neural Networks 12: 604–611

    Article  Google Scholar 

  26. Das K, Morgera SD (1998) Adaptive interference cancellation for DS-CDMA systems using neural network techniques. IEEE J Select Areas Commun 16: 1774–1784

    Article  Google Scholar 

  27. Yoon SH, Rao SS (2000) Annealed neural network based multiuser detector in code division multiple access commmunications. IEE Proc-Commun 147: 57–62

    Article  Google Scholar 

  28. Sohn I, Gupta SC (1999) Adaptive multiuser detection based on RBF networks in impulsive noise CDMA channels. Int J Wireless Inform Net 6: 59–66

    Article  Google Scholar 

  29. Lippmann RP, Beckman P (1989) Adaptive neural net preprocessing for signal detection in non-Gaussian noise. Advances Neural Inform Process Syst 1: 124–132

    Google Scholar 

  30. Chuah TC, Sharif BS, Hinton OR (2001) Robust adaptive spread-spectrum receiver with neural-net preprocessing in non-Gaussian noise. IEEE Trans Neural Networks 12: 546–558

    Article  Google Scholar 

  31. Shao M, Nikias CL (1993) Signal processing with fractional lower order moments: Stable processes and their applications. Proc IEEE 81: 986–1010

    Article  Google Scholar 

  32. Kuruoglu EE (1998) Signal Processing in Alpha-Stable Noise Environments: A Least Lp-Norm Approach. Ph.D. Thesis, Signal Processing and Communications Laboratory, Department of Engineering, University of Cambridge, Cambridge

    Google Scholar 

  33. Gonzalez JG (1997) Robust Techniques for Wireless Communications in Non-Gaussian Environments. Ph.D. Dissertation, Department of Electrical and Computer Engineering, University of Delaware, Newark, Delaware

    Google Scholar 

  34. Lupas R, Verdu S (1989) Linear multiuser detectors for synchronous codedivision multiple-access channels. IEEE Trans Inform Theory 35: 123–136

    Article  MathSciNet  MATH  Google Scholar 

  35. Huber PJ (1981) Robust Statistics, Wiley, New York

    Book  MATH  Google Scholar 

  36. Blatteberg R, Sargent T (1971) Regression with non-Gaussian stable disturbances: Some sampling results. Econometrica 39: 501–510

    Article  Google Scholar 

  37. Shanno DF, Rocke DM (1986) Numerical methods for robust regression: Linear models. SIAM J Sci Stat Comput 7: 86–97

    Article  MathSciNet  MATH  Google Scholar 

  38. Holland PW, Welsch RE (1977) Robust regression using iteratively reweighted least squares. Commun Stat-Theor Meth 6: 813–827

    Article  Google Scholar 

  39. Madsen K, Nielsen HB (1990) Finite algorithms for robust linear regression. BIT 30: 682–699

    Article  MathSciNet  MATH  Google Scholar 

  40. O’Leary DP (1990) Robust regression computation using iteratively reweighted least squares. SIAM J Matrix Anal Appl 11: 466–480

    Article  MathSciNet  MATH  Google Scholar 

  41. Beaton AE, Tukey JW (1974) The fitting of power series, meaning polynomials, illustrated on band-spectroscopic data. Technometrics 16: 147–185

    Article  MATH  Google Scholar 

  42. Birch JB (1980) Effects of the starting value and stopping rule on robust estimates obtained by iterated weighted least squares. Commun Statist-Simula Comput 9: 141–154

    Article  Google Scholar 

  43. Birch JB (1980) Some convergence properties of iterated reweighted least squares in the location model. Commun Statist-Simula Comput 9: 395–369

    Google Scholar 

  44. Byrd RH, Pyne DA (1979) Some results on the convergence of the iteratively reweighted least squares algorithm for robust regression. Proc Stat Comp Sec, Am Stat Assoc 87–90

    Google Scholar 

  45. Huber PJ (1975) Robust methods of estimation of regresison coefficients. In Proceedings on the 2nd International Summer School on Problems of Model Choice and Regression Analysis, Rheinhardsbrum, G. D. R., 8–18 November

    Google Scholar 

  46. Ekblom H (1988) A new algorithm for the Huber estimator in linear models. BIT 28: 123–132

    Article  MathSciNet  MATH  Google Scholar 

  47. Wang X, Poor HV (1999) Robust multiuser detection in non-Gaussian channels. IEEE Trans Signal Process 47: 289–305

    Article  Google Scholar 

  48. Cichocki A, Unbehauen R (1992) Neural networks for solving systems of linear equations and related problems. IEEE Trans Circuits Syst I-Fundam Theor Appl 39: 124–138

    Article  MATH  Google Scholar 

  49. Golub GH, Van Loan CF (1989) Matrix Computation, North Oxford Academic, Oxford

    Google Scholar 

  50. Coppersmith D, Winograd S (1990) Matrix multiplication via arithmetic progressions. J Symbolic Comput 9: 251–280

    Article  MathSciNet  MATH  Google Scholar 

  51. Berrou C, Glavieux A, Thitimajshima P (1993) Near Shannon limit errorcorrecting coding: Turbo codes. In Proceedings of the IEEE International Conference on Communications, Geneva, Switzerland, 1064–1070

    Google Scholar 

  52. Bahl LR, Cocke J, Jelinek F, Raviv J (1974) Optimal decoding of linear codes for minimizing symbol error rate. IEEE Trans Inform Theory 20: 284–287

    Article  MathSciNet  MATH  Google Scholar 

  53. Sklar B (1997) A primer on Turbo code concepts IEEE Commun Mag, 94–102

    Google Scholar 

  54. Woodard JP, Hanzo L (2000) Comparative study of turbo decoding techniques: An overview. IEEE Trans Veh Technol 49: 2208–2233

    Article  Google Scholar 

  55. Heegard C, Wicker SB (1998) Turbo Coding, Kluwer Academic Press, Boston

    Google Scholar 

  56. Vucetic B, Yuan J (2000) Turbo Codes- Principles and Applications, Kluwer Academic Press, Boston

    Book  MATH  Google Scholar 

  57. Robertson P, Hoeher P (1997) Optimal and sub-optimal maximum a posteriori algorithms suitable for turbo decoding. Eur Trans Telecomm 8: 119–125

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sharif, B.S., Chuah, T.C., Hinton, O.R. (2004). Robust Multiuser Detection Using Artificial Neural Networks. In: Soft Computing in Communications. Studies in Fuzziness and Soft Computing, vol 136. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45090-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45090-0_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53623-6

  • Online ISBN: 978-3-540-45090-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics