Skip to main content

Voice Over Wireless LAN Using Intelligent Control

  • Chapter
Soft Computing in Communications

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 136))

  • 177 Accesses

Abstract

In this chapter, we present a network framework in which Variable Bit Rate (VBR) voice is transported over a wireless Local Area Network (LAN) using two novel intelligent control systems. First, the Intelligent Multiple Access Control System (IMACS) at the base station governs the medium access of the uplink channel. In particular, IMACS supports both Available Bit Rate (ABR) data traffic and in-band signaling control (SCR) traffic for VBR voice based on a TDM-based contention access scheme. Significantly, dynamic allocation of contention bandwidth between ABR and SCR traffic is facilitated through predicting ABR self-similar traffic characteristics based on a neural-fuzzy approach. As a result, IMACS offers various QoS guarantees and a maximum of network throughput irrelevant to traffic variation. With such guarantees, the second system- Intelligent Voice Smoother (IVoS) at the application layer of each mobile terminal facilitates intramedia synchronization of voice data streams. The traffic predictor of IVoS predicts three traffic characteristics of every newly encountered talkspurt period. Based on the predicted characteristics, IVoS determines the corresponding buffering delay to be imposed on the first frame. All subsequent frames of the talkspurt can be playout in a quasi-ConstantBit-Rate (CBR) manner. Finally, we demonstrate via experimental results that with such intelligent control, the playout Quality of Service (QoS) of VBR voice can be guaranteed irrespective of any traffic and load variation.

This work was supported in part by the MOE Program of Excellence Research, Taiwan, R.O.C., under Contract 89-E-FA04–1–4, and in part by Institute for Information Industry (III), MOEA, Taiwan, R.O.C., under Contract 91–0238.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cox D (1995) Wireless Personal Communications: What Is It? IEEE Pers Comm, 2(2), 20–35

    Article  Google Scholar 

  2. Yuang M, Tien P (2000) Multiple Access Control with Intelligent Bandwidth Allocation for Wireless ATM Networks. IEEE J Select Areas Commun, 18(9), 1658–669

    Article  Google Scholar 

  3. Raychaudhuri D, French L, Siracusa R, Biswas S, Yuan R, Narasimhan P, Johnston C (1997) WATMnet: A Prototype Wireless ATM System for Multimedia Personal Communication. IEEE J Select Areas Commun, 15(1), 83–95

    Article  Google Scholar 

  4. Prycker M (1995), Asynchronous Transfer Mode- Solution for Broadband ISDN. Prentice Hall, Third Edition

    Google Scholar 

  5. Levine D, Akyildiz I, Naghshineh M (1997) A Resource Estimation and Call Admission Algorithm for Wireless Multimedia Networks Using the Shadow Cluster Concept. IEEE J Select Areas Commun, 5(1), 1–12

    Google Scholar 

  6. Listanti M, Mascitelli F, Mobilia A (1998) D2MA: A Distributed Access Protocol for Wireless ATM Networks. Proc IEEE INFOCOM, 315–321

    Google Scholar 

  7. Saito H (1994), Teletraffic Technologies in ATM Networks. Norwood, MA: Artech House

    Google Scholar 

  8. Tien P, Yuang M (1999) Intelligent Voice Smoother for Silence-Suppressed Voice over Internet. IEEE J Select Areas Commun, 17(1), 29–41

    Article  Google Scholar 

  9. Yuang M, Tien T, Liang S (1997) Intelligent Video Smoother for Multimedia Communicaitons. IEEE J Select Areas Commun, 15(2), 136–146

    Article  Google Scholar 

  10. Ramjee R, Kurose J, Towsley D (1994) Adaptive Playout Mechanisms for frameized Audio Applications in Wide-Area Networks. Proc IEEE INFOCOM, 680–688

    Google Scholar 

  11. Little T, Ghafoor A (1991) Multimedia Synchronization Protocols for Broadband Integrated Services. IEEE J Select Areas Commun, 9(9), 1368–1382

    Article  Google Scholar 

  12. Xie Y, Liu C, Lee M, Saadawi T (1996) Adaptive Multimedia Synchronization in a Teleconference System. Proc IEEE ICC, 1355–1359

    Google Scholar 

  13. Ishibashi Y, Tasaka S, Tsuji A (1996) Measured Performance of a Live Media Synchronization Mechanism in an ATM Network. Proc IEEE ICC, 1348–1354

    Google Scholar 

  14. Akyildiz I, et al (1999) Medium Access Control Protocols for Multimedia Traffic in Wireless Networks. IEEE Network, 39–47

    Google Scholar 

  15. Passas N, et al (1997) Quality-of-Service-Oriented Medium Access Control for Wireless ATM Networks. IEEE Comm Mag, 35(11), 42–50

    Article  Google Scholar 

  16. Lehnert J, Pursley M (1987) Error Probabilities for Binary Direct-Sequence SpreadSpectrum Communications with Random Signature Sequences. IEEE Trans Comm, COM-35(1), 87–98

    Article  Google Scholar 

  17. Abry P, Veitch D (1998) Wavelet Analysis of Long-Range Dependent Traffic. IEEE Trans Inform Theory, 44(1), 2–15

    Article  MathSciNet  MATH  Google Scholar 

  18. Giordano S, Miduri S, Pagano M, Russo F, Tartarelli S (1997) A Wavelet-based Approach to the Estimation of the Hurst Parameter for Self-similar Data. Proc DSP, 479–482

    Google Scholar 

  19. Jung C, Lin C (1998) An On-line Self-Constructing Neural Fuzzy Inference Network and Its Applications. IEEE Trans Fuzzy Systems, 6(1), 12–32

    Article  Google Scholar 

  20. Cruz R (1991) A Calculus for Network Delay, Part I: Network Elements in Isolation. IEEE Trans Inform Theory, 37(1), 114–131

    Article  MathSciNet  MATH  Google Scholar 

  21. Beran J, Sherman R, Taqqa M, Willinger W (1995) Long-Range Dependence in Variable Bit Rate Video Traffic. IEEE Trans Comm, 43(2/3/4), 1566–1579

    Article  Google Scholar 

  22. Paxson V (1997) Fast, Approxmate Synthesis of Fractional Gaussian Noise for Generating Self-Similar Network Traffic. Proc ACM/SIGCOMM, 5–18

    Google Scholar 

  23. Heffes H, Lucantoni D (1986) A Markov Modulated Characterization of Packetized Voice and Data Traffic and Related Statistical Multiplexer Performance. IEEE J Select Areas Commun, 4(6), 856–868

    Article  Google Scholar 

  24. Daigle J (1992) Queueing Theory for Telecommunications. Addison-Wesley

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yuang, M.C., Tien, PL. (2004). Voice Over Wireless LAN Using Intelligent Control. In: Soft Computing in Communications. Studies in Fuzziness and Soft Computing, vol 136. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45090-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45090-0_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53623-6

  • Online ISBN: 978-3-540-45090-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics