Advertisement

A Clustering Approach to the Vision-Based Interface for Interactive Computer Games

  • Hyun Kang
  • Chang Woo Lee
  • Keechul Jung
  • Hang Joon Kim
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2690)

Abstract

In interactive computer games, vision can be a powerful interface between humans and computers. In this paper, we propose a vision-based interface for 3D action games. We make dynamic gestures to input of the interface and represent a user’s gesture as an ordered sequence of a user’s poses. To estimate a human poses, we classify whole frames using K-Means clustering. For recognizing a gesture, each symbols from input sequence is matched with templates composed of ordered pose symbol sequences that indicate the specific gestures. Our interface recognizes ten gesture commands with a single commercial camera and no markers. Experimental results with 50 humans show an average recognition rate of 93.72 % per a gesture command.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Freeman, W.T., Anderson, D.B., Beardsley, P.A., Dodge, C.N., Roth, M., Weissman, C.D., Yerazunis, W.S.: Computer Vision for Interactive Com-puter Graphics. IEEE Computer Graphic and Application 18, 42–53 (1998)CrossRefGoogle Scholar
  2. 2.
    Freeman, W.T., Tanaka, K., Ohta, J., Kyuma, K.: Computer vision for computer games. In: IEEE Proceedings of the Second International Conference on Automatic Face and Gesture Recognition, October 14-16, pp. 100–105 (1996)Google Scholar
  3. 3.
    Bradski, G.R.: Computer Vision Face Tracking For Use in a Perceptual User Interface. Intel Technology Journal Q2, 1–15 (1998)Google Scholar
  4. 4.
    Duda, R.O., Hart, P.E., Strok, D.G.: Pattern Classification, 2nd edn. A Wiley Interscience Publication, Hoboken (2000)Google Scholar
  5. 5.
    Pavlovic, V.I., Sharma, R., Huang, T.S.: Visual interpretation of hand gestures fro human-computer interaction: a review. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 677–695 (1997)CrossRefGoogle Scholar
  6. 6.
    Lee, C.W., Lee, Y.C., Park, S.Y., Kim, H.J.: Real-Time Face Detection and Tracking Using PCA and NN. In: Ishizuka, M., Sattar, A. (eds.) PRICAI 2002. LNCS (LNAI), vol. 2417, pp. 615–625. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Hyun Kang
    • 1
  • Chang Woo Lee
    • 1
  • Keechul Jung
    • 2
  • Hang Joon Kim
    • 1
  1. 1.Dept. of Computer EngineeringKyungpook National UnivDaeguSouth Korea
  2. 2.School of Media, College of Information ScienceSoongsil UnivSeoulSouth Korea

Personalised recommendations