On the Effects of Outliers on Evolutionary Optimization

  • Dirk V. Arnold
  • Hans-Georg Beyer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2690)


Most studies concerned with the effects of noise on evolutionary computation have assumed a Gaussian noise model. However, practical optimization strategies frequently face situations where the noise is not Gaussian, and sometimes it does not even have a finite variance. In particular, outliers may be present. In this paper, Cauchy distributed noise is used for modeling such situations. A performance law that describes how the progress of an evolution strategy using intermediate recombination scales in the presence of such noise is derived. Implications of that law are studied numerically, and comparisons with the case of Gaussian noise are drawn.


Gaussian Noise Evolution Strategy Candidate Solution Noisy Environment Noise Strength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1965)Google Scholar
  2. 2.
    Arnold, D.V.: Noisy Optimization with Evolution Strategies. Genetic Algorithms and Evolutionary Computation Series. Kluwer Academic Publishers, Norwell (2002)zbMATHGoogle Scholar
  3. 3.
    Arnold, D.V., Beyer, H.-G.: Efficiency and self-adaptation of the(μ / μ I, λ)-ES in a noisy environment. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X., et al. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 39–48. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  4. 4.
    Arnold, D.V., Beyer, H.-G.: Local performance of the(μ / μ I, λ)-ES in a noisy environment. In: Martin, W.N., Spears, W.M. (eds.) Foundations of Genetic Algorithms 6, pp. 127–141. Morgan Kaufmann, San Francisco (2001)CrossRefGoogle Scholar
  5. 5.
    Arnold, D.V., Beyer, H.-G.: Local performance of the (1 + 1)-ES in a noisy environment. IEEE Transactions on Evolutionary Computation 6(1), 30–41 (2002)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Arnold, D.V., Beyer, H.-G.: Performance analysis of evolution strategies with multi-recombination in high- dimensional IRN-search spaces disturbed by noise. Theoretical Computer Science 289(1), 629–647 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Arnold, D.V., Beyer, H.-G.: A comparison of evolution strategies with other direct search methods in the presence of noise. Computational Optimization and Applications 24(1), 135–159 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Beyer, H.-G.: Evolutionary algorithms in noisy environments: Theoretical issues and guidelines for practice. Computer Methods in Mechanics and Applied Engineering 186, 239–267 (2000)zbMATHCrossRefGoogle Scholar
  9. 9.
    Beyer, H.-G., Olhofer, M., Sendhoff, B.: On the behavior of(μ / μ I, λ)-ES optimiz- ing functions disturbed by generalized noise. In: Rowe, J., et al. (eds.) Foundations of Genetic Algorithms 7, Morgan Kaufmann, San Francisco (2003) (in press)Google Scholar
  10. 10.
    David, H.A., Nagaraja, H.N.: Concomitants of order statistics. In: Balakr-ishnan, N., Rao, C.R. (eds.) Handbook of Statistics, vol. 16, pp. 487–513. Elsevier, Amsterdam (1998)Google Scholar
  11. 11.
    Fitzpatrick, J.M., Grefenstette, J.J.: Genetic algorithms in noisy environments. Machine Learning 3, 101–120 (1988)Google Scholar
  12. 12.
    Miller, B.L., Goldberg, D.E.: Genetic algorithms, selection schemes, and the varying effects of noise. Evolutionary Computation 4(2), 113–131 (1997)CrossRefGoogle Scholar
  13. 13.
    Rattray, M., Shapiro, J.: Noisy fitness evaluation in genetic algorithms and the dynamics of learning. In: Belew, R.K., Vose, M.D. (eds.) Foundations of Genetic Algorithms 4, pp. 117–139. Morgan Kaufmann, San Francisco (1997)Google Scholar
  14. 14.
    Rechenberg, I.: Evolutionsstrategie: Optimierung technischer Systeme nach den Prinzipien der biologischen Evolution. Frommann-Holzboog, Stuttgart (1973)Google Scholar
  15. 15.
    Rudolph, G.: Local convergence rates of simple evolutionary algorithms with Cauchy mutations. IEEE Transactions on Evolutionary Computation 1(4), 249–258 (1997)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Stuart, A., Ord, J.K.: Kendall’s Advanced Theory of Statistics. In: Distribution Theory, 6th edn., Edward Arnold, London (1994)Google Scholar
  17. 17.
    Szu, H., Hartley, R.: Fast simulated annealing. Physics Letters A 122, 157–162 (1987)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Dirk V. Arnold
    • 1
  • Hans-Georg Beyer
    • 1
  1. 1.Department of Computer Science XIUniversity of DortmundDortmundGermany

Personalised recommendations