Advertisement

Fluctuation in Multi-agent System of Supermarket Chain Network

  • Kwok Yip Szeto
  • Chiwah Kong
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2690)

Abstract

Resource allocation on a supermarket chain network in shopping malls is modeled by a Multi-Agent System describing competition and cooperation between branches of companies. Shops are occupied by one of two companies, B (black) or W (white) and they compete with each other for domination. Fluctuation in the market share is measured as a function of noise, which is a result of advertisement and discount between competing agents. Existence of a critical value of noise level where competition drives large fluctuation in the market share is demonstrated by results in Monte Carlo simulation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lor, K.F., Szeto, K.Y.: Existence of Minority in Multi-Agent Systems using Voronoi Tessellation. In: Leung, K.-S., Chan, L., Meng, H. (eds.) IDEAL 2000. LNCS, vol. 1983, pp. 320–325. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  2. 2.
    Lor, W.K.F., Szeto, K.Y.: Switching Dynamics of Multi-Agent Systems: Soap Froth Paradigm. In: International Joint Conference on Neural Networks 2000, Neural Computing: New Challenges and Perspectives for the New Millennium. IJCNN IEEE-INNS-ENNS, vol. VI, pp. 625–628 (2000)Google Scholar
  3. 3.
    Jiang, M., Luo, Y., Szeto, K.Y., Yang, S.: Dynamics of Negotiating Agent in a Soap Froth World. In: Proceeding of ICONIP 2001, Shanghai, vol. 1, pp. 154–159 (2001)Google Scholar
  4. 4.
    Szeto, K.Y.: Shell Model of Soap Froth. In: Cho, Y.M., Hong, J.B., Yang, C.N. (eds.) Invited talk in the Proceedings of the Inauguration conference of the Asia-Pacific Center of Theoretical Physics, Current Topics in Physics, June 4–10, 1996, vol. 1, pp. 361–375. World Scientific, Singapore (1998)Google Scholar
  5. 5.
    Szeto, K.Y., Tam, W.Y.: Universal Topological Properties of Layers in Soap Froth. Phys.Rev. E53, 4213–4216 (1996)Google Scholar
  6. 6.
    Szeto, K.Y., Aste, T., Tam, W.Y.: Topological Correlations in Soap Froth. Phys.Rev. E58, 2656–2659 (1998)Google Scholar
  7. 7.
    Aste, T., Szeto, K.Y., Tam, W.Y.: Statistical properties and Shell analysis in random cellular structures. Phys. Rev. E54, 5482–5492 (1996)Google Scholar
  8. 8.
    Szeto, K.Y., Tam, W.Y.: Evolution of Soap Froth from an Initial Bubble Crystal State to the Scaling State. In: Invited talk at the APCTP conference on Biophysics, July 1999, published by AIP (1999)Google Scholar
  9. 9.
    Stavans, J., Domany, E., Mukamel, D.: Universality and Pattern Selection in Two- Dimensional Cellular Structures. Europhysics Letters 15(5), 479–484 (1991)CrossRefGoogle Scholar
  10. 10.
    Szeto, K.Y., Tam, W.Y.: Edge Scaling of Soap Froth. Physica A, 248–254 (1998)Google Scholar
  11. 11.
    Dubertret, B., Szeto, K.Y., Tam, W.Y.: T1-correlations in soap froths. Europhysics Letter 45, 143–148 (1999)CrossRefGoogle Scholar
  12. 12.
    Von Neumann, J.: Discussion. Metal Interfaces, pp. 108–110. American Society for Metals, Cleveland (1952)Google Scholar
  13. 13.
    Szeto, K.Y., Chiwah, K.: Computational Economics (accepted for publication)Google Scholar
  14. 14.
    Tam, W.Y., Cheung, K.M., Szeto, K.Y.: Ancestors of soap froth. Phys.Rev. E57, 7354–7357 (1998)Google Scholar
  15. 15.
    Szeto, K.Y., Fu, X., Tam, W.Y.: Universal Topological Properties of Twodimensional Cellular Patterns. Phys.Rev. Lett., 138302-1–138302-3 (2002)Google Scholar
  16. 16.
    Szeto, K.Y.: unpublishedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Kwok Yip Szeto
    • 1
  • Chiwah Kong
    • 1
  1. 1.Department of PhysicsHong Kong University of Science and TechnologyHong Kong SARChina

Personalised recommendations