Skip to main content

Discontinuous character of rock masses: some open questions related to rock fracture mechanics and scale effects

  • Chapter
Advanced Mathematical and Computational Geomechanics

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 13))

  • 471 Accesses

Abstract

Rock Mechanics deals with materials whose mechanical behavior is largely influenced by the presence of natural discontinuities. Due to this, it is necessary to refer to mechanical models which allow to introduce displacement discontinuities into the continuous medium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allodi A, Castelli M, Scavia C (2002) Implementation of the Slip-Weakening Model in a Displacement Discontinuity Method based numerical technique. In: Proc Int Conf BEM 24, 17–19 June 2002, Sintra, Portugal

    Google Scholar 

  2. Bieniawski ZT (1974) Estimating the strength of rock materials. J South Africa Inst Min Metall, vol 74, pp 312 320

    Google Scholar 

  3. Call RD, Savely J, Nicholas DE (1976). Estimation of joint set characteristics from surface mapping data. In: Proc19th US Symposium on Rock Mechanics

    Google Scholar 

  4. Crouch SL, Starfield AM (1983). Boundary Element Methods in Solid Mechanics. George Allen and Unwin, London

    MATH  Google Scholar 

  5. Desrues J (1984). La localisation de la déformation dans les matériaux granulaires (in French). Thèse de Doctorat es Sciences, USMG and IMG, Grenoble

    Google Scholar 

  6. Desrues J (1995). Analyse stéreophotogrammétrique de la fissuration progressive (in French). Photomécanique 95, Berthaud Y, Paraskevas D, Taroni M (eds), Eyrolles, Paris, pp 149 162

    Google Scholar 

  7. Erdogan F, Sih GH (1963). On the Crack Extension in Plates under Plane Loading and Transverse Shear. J of Basic Eng, ASME, vol 85, pp 519 527

    Google Scholar 

  8. Hoek E, Brown ET (1980). Underground excavation in rock. J South Africa Inst Min and Metall, George Allen and Unwin, London

    Google Scholar 

  9. Ingraffea AR (1987). Theory of Crack Initiation and Propagation in Rock. Fracture Mechanics of Rock, Academic Press, London, pp 71 108

    Google Scholar 

  10. Jaeger JC, Cook NGW (1976). Fundamentals of Rock Mechanics, Chapman and Hall, London

    Google Scholar 

  11. Nemat-Nasser S, Hori M (1993). Micromechanics: overall properties of heterogeneous materials. North-Holland, Amsterdam, pp 3 23, 27 31, 85 94, 113 143

    Google Scholar 

  12. Palmer AC, Rice JR (1973). The growth of slip surfaces in the progressive failure of over-consolidated clay. In: Proc Roy Soc Londond A. 332, pp 527 548

    Google Scholar 

  13. Pinto da Cunha A (1993). Scale effects in rock engineering. Pinto da Cunha (ed) Balkema, Rotterdam, pp 3 14

    Google Scholar 

  14. Priest SD, Hudson J (1981). Estimation of discontinuity spacing and trace length using scanline surveys. Int J Rock Mech Min Sci, vol 13, pp 135 148

    Google Scholar 

  15. Reches Z, Lockner DA (1994). Nucleation and growth of faults in brittle rocks. J Geophys Res, vol 99(B9), pp 18. 159 18. 173

    Google Scholar 

  16. Robertson AmacG (1970). The interpretation of geological factors for use in slope theory. In: Proc Symp on Plannig Open Pit Mines, van Rensburg (ed), Balkema, Rotterdam

    Google Scholar 

  17. ] Scavia C (1992). A numerical technique for the analysis of cracks subjected to normal compressive stresses. Int J Num Meth in Geomech, vol 33, pp 929 942

    Article  Google Scholar 

  18. Scavia C, Viggiani G, Castelli M, Desrues J (1997). An experimental and numerical study of shear fracture propagation in rock. In: Proc Int Symp on Deformation and Progressive Failure in Geomechanics, IS NAGOYA’97, pp 175 180

    Google Scholar 

  19. Tillard D (1992). Etude de la rupture dans les géomatériaux cohésifs. Application à la marne de Beaucaire (in French). Thèse de Doctorat es Sciences, UJF, Grenoble

    Google Scholar 

  20. Wawersik WR, Fairhurst C (1970). A study of brittle rock fracture in laboratory compression experiments. Int J Rock Mech Min Sci vol 7, pp 561 575

    Article  Google Scholar 

  21. Yin HP, Ehrlacher A (1996). Size and density influence on overall moduli of finite media with crack. Mechanics of materials, vol 23, pp 287–294

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Castelli, M., Saetta, V., Scavia, C. (2003). Discontinuous character of rock masses: some open questions related to rock fracture mechanics and scale effects. In: Kolymbas, D. (eds) Advanced Mathematical and Computational Geomechanics. Lecture Notes in Applied and Computational Mechanics, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45079-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45079-5_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07357-1

  • Online ISBN: 978-3-540-45079-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics